Biodiversity of Phytoseiidae (Acari: Mesostigmata) of Annual Specialty Crop Systems: The Current State of Knowledge Worldwide and the Need for Study in North America

  • Monica A. FarfanEmail author
  • Rebecca A. Schmidt-Jeffris


Predatory mites in the family Phytoseiidae (Acari: Mesostigmata) are known to be important natural enemies of common plant pests, including tetranychids, tarsonemids, eriophyids, whiteflies, and thrips. While a great deal is known about the diversity and abundances of phytoseiid species in perennial agricultural systems in the United States, such as orchards and vineyards, very little is known regarding the phytoseiid community in annual specialty crop systems. Most information regarding endemic phytoseiid diversity comes from studies in other parts of the world, which host phytoseiid species specific to those areas and where common annual specialty crops tend to differ from those in North America, especially the U.S. The aims of this review are to present an argument for further research in this area, present what is known worldwide regarding the presence of phytoseiids on annual specialty crops, and discuss patterns of diversity and life-style classification of phytoseiid species related to presence on crop species. Though different species are found in other parts of the world, comparisons in their life-style specificity and general theories of food web ecology can be used to predict patterns in endemic species composition in U.S. annual vegetable agroecosystems.



We thank Lee T. Ayres for assisting with data tables and Jason A. Josephson-Storm at Williams College, Williamstown, MA, for his kind translation of Komi et al. (2008b).


  1. Alston DG (1994) Effect of apple orchard floor vegetation on density and dispersal of phytophagous and predaceous mites in Utah. Agr Ecosyst Environ 50:73–84CrossRefGoogle Scholar
  2. Argolo PS, Banyuls N, Santiago S, Molla O, Jacas J, Urbaneja A (2013) Compatibility of Phytoseiulus persimilis and Neoseiulus californicus (Acari: Phytoseiidae) with Imidacloprid to manage clementine nursery pests. Crop Prot 43:175–182CrossRefGoogle Scholar
  3. Arthropod Pesticide Resistance Database (2017) Arthropod pesticide resistance database. In: Michigan State University. Accessed 22 June 2017
  4. Binisha KV, Bhaskar H (2013) Mite fauna associated with major vegetable crops of Thrissur District, Kerala. Entomon 38:6Google Scholar
  5. Camporese P, Duso C (1996) Different colonization patterns of phytophagous and predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: a case study. Exp Appl Acarol 20:1–22Google Scholar
  6. Chorąży A, Kropczyska-Linkiewicz D, Sas D, Escudero-Colomar L-A (2016) Distribution of Amblydromalus limonicus in northeastern Spain and diversity of phytoseiid mites (Acari: Phytoseiidae) in tomato and other vegetable crops after its introduction. Exp Appl Acarol 69:465–478CrossRefGoogle Scholar
  7. Çobanoğlu S, Kumral NA (2016) The biodiversity, density and population trend of mites (Acari) on Capsicum annuum L. in temperate and semi-arid zones of Turkey. Syst Appl Acarol 21:907–918Google Scholar
  8. Croft B, Blackwood J, McMurtry J (2004) Classifying life-style types of phytoseiid mites: diagnostic traits. Exp Appl Acarol 33:247–260CrossRefGoogle Scholar
  9. Croft BA, Brown AWA (1975) Responses of arthropod natural enemies to insecticides. Annu Rev Entomol 20:285–335CrossRefGoogle Scholar
  10. Croft B, McMurtry J, Luh H-K (1998) Do literature records of predation reflect food specialization and predation types among phytoseiid mites (Acari: Phytoseiidae)? Exp Appl Acarol 22:467–480CrossRefGoogle Scholar
  11. Downing RS, Moilliet TK (1972) Replacement of Typhlodromus occidentalis by T. caudiglans and T. pyri (Acarina: Phytoseiidae) after cessation of sprays on apple trees. Can Entomol 104:937–940CrossRefGoogle Scholar
  12. Garcia-Mari F, Gonzalez-Zamora JE (1999) Biological control of Tetranychus urticae (Acari: Tetranychidae) with naturally occurring predators in strawberry plantings in Valencia, Spain. Exp Appl Acarol 23:487–495CrossRefGoogle Scholar
  13. Gilstrap F, Friese D (1985) The predatory potential of Phytoseiulus persimilis, Amblyseius californicus, and Metaseiulus occidentalis (Acarina: Phytoseiidae). Int J Acarol 11:163–168CrossRefGoogle Scholar
  14. Hadam JJ, Aliniazee MT, Croft BA (1986) Phytoseiid mites (Parasitiformes: Phytoseiidae) of major crops in Willianette Valley, Oregon, and pesticide resistance in Typhtodromus pyri Scheuten. Environ Entomol 15:1255–1264CrossRefGoogle Scholar
  15. Haneef S, Sadanandan MA (2013) Survey of predatory mites (Acari: Phytoseiidae) associated with economically important plants of North Kerala. Biol Forum 5:119–122Google Scholar
  16. Hoy MA (2011a) Integrated mite management in California almonds Agricultural Acarology: introduction to integrated mite management. CRC Press, New York, pp 245–256CrossRefGoogle Scholar
  17. Hoy MA (2011b) Integrated mite management in citrus in Florida and California. Agricultural Acarology: introduction to integrated mite management. CRC Press, New York, pp 257–282Google Scholar
  18. Hoy MA (2011c) The strategy of integrated mite management. Agricultural Acarology: introduction to integrated mite management. CRC Press, New York, pp 47–82Google Scholar
  19. Kaur KS, Sangha G (2016) Diversity of arthropod fauna associated with chilli (Capsicum annuum L.) in Punjab. J Entomol Zool Stud 4:390–396Google Scholar
  20. Komi K, Arakawa R, Amano H (2008a) Predatory potential against thrips Palmi karny of some native phytoseiid mites (Acari: Phytoseiidae) occurring on greenhouse vegetable crops in Kochi prefecture, Japan. J Acarol Soc Jpn 17:29–35CrossRefGoogle Scholar
  21. Komi K, Arakawa R, Amano H (2008b) Native phytoseiid mites (Acari: Phytoseiidae) occurring on greenhouse vegetable crops under the pest control programs with natural enemies in Kochi prefecture, Japan. J Acarol Soc Jpn 17:23–28CrossRefGoogle Scholar
  22. Maheswary J, Bhaskar H, Gowda CC (2015) Phytoseiid mite fauna associated with major vegetable crops of Thrissur District, Kerala. J Biol Control 29:183–186CrossRefGoogle Scholar
  23. Mailloux J, Le Bellec F, Kreiter S, Tixier M-S, Dubois P (2010) Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards. Exp Appl Acarol 52:275–290CrossRefGoogle Scholar
  24. Mandape SS, Shukla A (2017) Diversity of phytoseiid mites (Acari: Mesostigmata: Phytoseiidae) in the agro-ecosystems of South Gujarat, India. J Entomol Zool Stud 5:755–765Google Scholar
  25. Matthysse JG, Denmark HA (1981) Some phytoseiids of Nigeria (Acarina: Mesostigmata). Fla Entomol 64:340–357. Scholar
  26. McCann KS, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794CrossRefGoogle Scholar
  27. McMurtry J (1992) Dynamics and potential impact of ‘generalist’ phytoseiids in agroecosystems and possibilities for establishment of exotic species. Exp Appl Acarol 14:371–382CrossRefGoogle Scholar
  28. McMurtry J, Croft B (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321. Scholar
  29. McMurtry JA, De Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320. Scholar
  30. McMurtry JA, Oatman ER, Fleschner CA (1971) Phytoseiid mites on some tree and row crops and adjacent wild plants in southern California. J Econ Entomol 64:405–408. Scholar
  31. McMurtry JA, Scriven GT (1964) Studies on the feeding, reproduction, and development of Amblyseius hibisci (Acarina: Phytoseiidae) on various food substances. Ann Entomol Soc Am 57:649–655. Scholar
  32. Morris MA, Berry RE, Croft BA (1999) Phytoseiid mites on peppermint and effectiveness of Neoseiulus fallacis to control Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) in arid growing regions. J Econ Entomol 92:1072–1078. Scholar
  33. Naga B, Sharma A, Khinchi S, Kumawat K (2017) Seasonal incidence of mite, Tetranychus cinnabarinus (Boisduval) and natural enemies on okra in semi-arid Rajasthan. J Pharmacog Phytochem 6:186–189Google Scholar
  34. Nguyen TPT, Tran NV, Tran TTA (2016) Species occurrence of phytophagous and predatory mites (Acari: Tetranychidae, Phytoseiidae) on fruit vegetables in Ho Chi Minh City. Vietnam. J Acarol Soc Jpn 25:S133–S136. Scholar
  35. Nyrop JP (1988) Spatial dynamics of an acarine predator-prey system: Typhlodromus pyri (Acari: Phytoseiidae) preying on Panonychus ulmi (Acari: Tetranychidae). Environ Entomol 17:1019–1031. Scholar
  36. Özsisli T, Çobanoğlu S (2011) Mite (Acari) fauna of some cultivated plants from Kahramanmaras, Turkey. Afr J Biotechnol 10:2149–2155. Scholar
  37. Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. Am Nat 138:123. Scholar
  38. Sabelis MW, Van de Baan HE (1983) Location of distant spider mite colonies by phytoseiid predators: demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol Exp Appl 33:303–314. Scholar
  39. Sanjta S, Chauhan U (2015) Survey of thrips (Thysanoptera) and their natural enemies in vegetables from mid hills of Himachal Pradesh. Ecoscan 9:713–715Google Scholar
  40. Schmidt-Jeffris RA, Beers EH (2015) Comparative biology and pesticide susceptibility of Amblydromella caudiglans and Galendromus occidentalis as spider mite predators in apple orchards. Exp Appl Acarol 67:35–47. Scholar
  41. Schmidt-Jeffris RA, Beers EH, Crowder DW (2015) Phytoseiids in Washington commercial apple orchards: biodiversity and factors affecting abundance. Exp Appl Acarol 67:21–34. Scholar
  42. Singh V, Chauhan U (2014) Diversity of mite (Acari) fauna associated with vegetables and ornamental plants in midhill conditions of Himachal Pradesh, India. J Biol Control 28:75–80Google Scholar
  43. Singh V, Chauhan U (2016) Study of phytoseiid (Acari: Mesostigmata) inhabiting brinjal (Solanum melongena L.: Solanaceae) Himachal Pradesh, India. Bioscan 11:2173–2175Google Scholar
  44. Skirvin DJ, Fenlon JS (2001) Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): Implications for biological control. Bull Entomol Res 91:61. Scholar
  45. Song Z-W, Zheng Y, Zhang B-X, Li D-S (2016) Prey consumption and functional response of Neoseiulus californicus and Neoseiulus longispinosus (Acari: Phytoseiidae) on Tetranychus urticae and Tetranychus kanzawai (Acari: Tetranychidae). Syst Appl Acarol 21:936–946. Scholar
  46. Strong DR (1992) Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73:747. Scholar
  47. Tuttle DM, Muma MH (1973) Phytoseiidae (Acarina: Mesostigmata) inhabiting agricultural and other plants in Arizona, College of Agriculture, University of Arizona. Tucson, AZGoogle Scholar
  48. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Molec 40:563–572. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Monica A. Farfan
    • 1
    Email author
  • Rebecca A. Schmidt-Jeffris
    • 2
  1. 1.Clemson University, Coastal Research and Education CenterCharlestonUSA
  2. 2.USDA-ARS, Temperate Tree Fruit and Vegetable Research UnitWapatoUSA

Personalised recommendations