Mycobiome of Brevipalpus Mite Strains and Insights on Metabolic Function in the Bacteriome of the Tetranychoidea Mites

  • Jose Carlos Verle RodriguesEmail author
  • Oscar E. Ospina
  • Steven E. Massey


Studies of arthropod microbiota and arthropod-microbe interactions are helping elucidate the strategies adopted by arthropods to colonize and succeed in complex environments, as well as leading to the development of unique pest management approaches. Tetranychoidea (Acariformes: Trombidiformes) are important pests of several crops due to their feeding habits and transmission of pathogens. In tetranychoid mites, the endosymbiont bacterium Cardinium represents a tantalizing first target for pest management research because it affects mite reproduction. In this study, we used previously published 16S ribosomal RNA sequence data of the microbiome bacteria in Brevipalpus yothersi (Baker 1949), Raoiella indica Hirst, 1924, and Oligonychus sp. and the PICRUSt pipeline to predict the content of genes with metabolic function in the bacteriome of the mites. Our results indicate that the bacteriomes of B. yothersi and Oligonychus sp. (which harbor Cardinium) contain significantly more genes involved in the metabolism of indole-alkaloids, glutamine, and biotin when compared with R. indica (which has no Cardinium). The genes for metabolism of biotin and nicotinate are also more abundant in adult B. yothersi and Oligonychus sp. than in their eggs, which is associated with lower abundance of Cardinium in the eggs. The metabolic specialization of Cardinium-dominated bacteriomes could also lead to lack of resistance to β-lactam antibiotics and DDT. While these results are predictive, they highlight the necessity of testing these variations in laboratory. We also present initial data on fungal microbial diversity associated with four different strains of the phytophagous mite vector Brevipalpus, which showed significant variation between strains, while all are dominated by the skin- and surface-specialist genus Malassezia.


False-spider mite Red-palm mite Malassezia Acari metabolism Cardinium Antibiotic resistance Xenobiotics Amino acid metabolism Vitamin supplementation 



To USDA/APHIS 8130-0059-CA and USDA-Hatch 427 for partial financing of this work and NIFA-06242 grant for infrastructural improvement.


  1. Aksoy S (2000) Tsetse—a haven for microorganisms. Parasitol Today 16:114–118CrossRefGoogle Scholar
  2. Angleró-Rodríguez YI, Blumberg BJ, Dong Y, Sandiford SL, Pike A, Clayton AM et al (2016) A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Sci Rep 6:34084. Scholar
  3. Boekhout T, Theelen B, Houbraken J, Robert V, Scorzetti G, Gafni A, Gerson U, Sztejnberg A (2003) Novel anamorphic mite-associated fungi belonging to the Ustilaginomycetes: Meirageulakonigii gen. nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii gen. nov., sp. nov. Int J Syst Evol Microbiol 53:1655–1664CrossRefGoogle Scholar
  4. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS One 15(3):e2001793. Scholar
  5. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010a) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  6. Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R (2010b) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267CrossRefGoogle Scholar
  7. Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, Favia G, Cherif A, Bandi C, Alma et al (2012) Microbial symbionts: a resource for the management of insect-related problems. Microb Biotechnol 5:307–317CrossRefGoogle Scholar
  8. Douglas AE (2007) Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 25:338–342CrossRefGoogle Scholar
  9. Duarte AP, Ferro M, Rodrigues A, Bacci M Jr, Nagamoto NS, Forti LC, Pagnocca FC (2016) Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing. Antonie Van Leeuwenhoek 109(9):1235–1243CrossRefGoogle Scholar
  10. Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, Mueller MJ, Gross R (2007) Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol 5:48CrossRefGoogle Scholar
  11. Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433CrossRefGoogle Scholar
  12. Hart BJ, Douglas AE (1991) The relationship between house-dust mites and fungi. In: The Acari. Springer, DordrechtCrossRefGoogle Scholar
  13. Ihrmark K, Bödeker, ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region— evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82(3):666–677. Scholar
  14. Iturbe-Ormaetxe I, Walker T, O’Neill SL (2011) Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 12(6):508–518. Scholar
  15. Kitajima EW, Rezende JAM, Rodrigues JCV (2003) Passion fruit green spot virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) on passion fruit in Brazil. Exp Appl Acarol 30:225–231CrossRefGoogle Scholar
  16. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes J, Clemente JC, Burkepile DE, Vega Thurber RL et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821CrossRefGoogle Scholar
  17. Lustgraaf B (1978) Ecological relationships between xerophilic fungi and house-dust mites (Acarida: Pyroglyphidae). Oecologia 33:351–359. Scholar
  18. Malacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G, Strano CP, Palmeri V (2017) A metabarcoding survey on the fungal microbiota associated to the olive fruit fly. Microb Ecol 73(3):677–684CrossRefGoogle Scholar
  19. Maoz Y, Gal S, Argov Y, Coll M, Palevsky E (2011) Biocontrol of persea mite, Oligonychus perseae, with an exotic spider mite predator and an indigenous pollen feeder. Biol Control 59:147–157CrossRefGoogle Scholar
  20. Nakabachi A, Ishikawa H (1999) Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol 45:1–6CrossRefGoogle Scholar
  21. Ospina O, Massey SE, Rodrigues JCV (2016) Reduced diversity in the bacteriome of the phytophagous mite Brevipalpus yothersi (Acari: Tenuipalpidae). Insects 7:80CrossRefGoogle Scholar
  22. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124CrossRefGoogle Scholar
  23. Quan AS, Eisen MB (2018) The ecology of the Drosophila-yeast mutualism in wineries. PLoS One 13(5):e0196440CrossRefGoogle Scholar
  24. Rodrigues JCV (2000) Relações patógeno-vetor-planta no sistema leprose dos citros. PhD dissertation, São Paulo University Piracicaba, BrazilGoogle Scholar
  25. Rodrigues JCV, Childers CC (2013) Brevipalpus mites (Acari: Tenuipalpidae): vectors of invasive, non-systemic cytoplasmic and nuclear viruses in plants. Exp Appl Acarol 59:165–175CrossRefGoogle Scholar
  26. Rodrigues JCV, Gallo-Meagher M, Ochoa R, Childers CC, Adams BJ (2004) Mitochondrial DNA and RAPD polymorphisms in the haploid mite Brevipalpus phoenicis (Acari: Tenuipalpidae). Exp Appl Acarol 34:275–290CrossRefGoogle Scholar
  27. Rodrigues JCV, Ochoa R, Kane EC (2007) First report of Raoiella indica Hirst (Acari: Tenuipalpidae) and its damage to coconut palms in Puerto Rico and Culebra Island. Int J Acarol 33:3–5CrossRefGoogle Scholar
  28. Rodrigues JCV, Childers CC, Kitajima EW (2016) Brevipalpus spp. (Acari: Tenuipalpidae): vectors of cytoplasmic and nuclear viruses in plants. In: Brown JK (ed) Vector-mediated transmission of plant pathogens. American Phytopathological Society, St. Paul, MN, pp 309–318CrossRefGoogle Scholar
  29. Sabree ZL, Kambhampati S, Moran NA (2009) Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci U S A 106:19521–19526CrossRefGoogle Scholar
  30. Saldaña MA, Hegde S, Hughes GL (2017) Microbial control of arthropod-borne disease. Memórias do Instituto Oswaldo Cruz 112(2):81–93CrossRefGoogle Scholar
  31. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246Google Scholar
  32. Smith TA, Driscoll T, Gillespie JJ, Raghavan R (2015) A Coxiella-like endosymbiont is a potential vitamin source for the lone star tick. Genome Biol Evol 7:831–838CrossRefGoogle Scholar
  33. Tanaka E, Shimizu K, Imanishi Y, Yasuda Y, Tanaka C (2008) Isolation of basidiomycetous anamorphic yeast-like fungus Meira argovae found on Japanese bamboo. Mycoscience 49(5):329–333CrossRefGoogle Scholar
  34. The Human Microbiome Project (HMP) Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214Google Scholar
  35. Wang JJ, Dong P, Xiao LS, Dou W (2008) Effects of removal of Cardinium infection on fitness of the stored-product pest Liposcelis bostrychophila (Psocoptera: Liposcelididae). J Econ Entomol 101:1711–1717CrossRefGoogle Scholar
  36. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  37. Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482CrossRefGoogle Scholar
  38. Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc R Soc B Biol Sci 270:1857–1865CrossRefGoogle Scholar
  39. Zalar P, Sybren de Hoog G, Schroers HJ, Frank JM, Gunde-Cimerman N (2005) Antonie Van Leeuwenhoek 87:311–328. Scholar
  40. Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jose Carlos Verle Rodrigues
    • 1
    Email author
  • Oscar E. Ospina
    • 1
  • Steven E. Massey
    • 2
  1. 1.Agro-Environmental Sciences Department, Center for Excellence in Quarantine & Invasive Species, Agricultural Experimental Station - Río PiedrasUniversity of Puerto RicoSan JuanUSA
  2. 2.Bioinformatics Laboratory, Department of BiologyUniversity of Puerto Rico – Rio PiedrasSan JuanUSA

Personalised recommendations