Advertisement

Use of the Ion Torrent PGM for Determining the Genomic Sequences of Francisella and Coxiella-Like Endosymbionts and Rickettsia Directly from Hard Ticks

  • Gregory A. DaschEmail author
  • Arunachalam Ramaiah
  • Zachary C. Holmes
  • Maria L. Zambrano
  • T. Brian Shirey
Chapter
  • 185 Downloads

Abstract

Microbiome assessments based on amplification and sequencing of their 16S rRNA genes or targeted surveys of specific agents have greatly augmented our understanding of the distribution and identity of bacteria found in ticks. The most prevalent tick bacteria include approximately 10 species, such as Coxiella-like (CLE) and Francisella-like (FLE) endosymbionts, and spotted fever group Rickettsia (SFG). However, genomes of only a few of the many tick agents that are not cultivable have been characterized by very deep next generation sequencing (Illumina HiSeq). As an alternative approach, we have assessed use of the Ion Torrent Personal Genome Machine (IT-PGM) for direct sequencing and assembly of these agent genomes. Agents were identified and quantitated in three genera of ticks (Amblyomma, Dermacentor, Rhipicephalus) by qPCR assays. Geneious, CLC Genomics Workbench, BWA, and SPAdes tools were used for read mapping and assembly of the sequences obtained from size-fractionated libraries made from DNA that was extracted from single alcohol-preserved ticks on single 318 or 314 IT-PGM chips with 200 bp chemistry. Plasmid and chromosome sequences were obtained for six SFGs, four FLEs, and three CLEs. The depth and percentage of genome coverage for symbionts and Rickettsia were enhanced by use of Qiagen Repli-G amplification of the DNA used for the libraries. The IT-PGM is a relatively inexpensive sequencing platform for initial genomic characterization of some of the abundant bacterial agents found in hard ticks.

Keywords

Ion torrent PGM Hard ticks Endosymbiont Rickettsia Coxiella Francisella 

Notes

Acknowledgements

The authors thank the following individuals for providing some of the individual ticks used in this study from other previous collaborative investigations: Sarah Billeter, Renjie Hu, Alece Powery, Jasmine Hensley, Lindsey Killmaster, and Amanda Jo Williams-Newkirk. We also thank Lisa Coburn, manager of the Oklahoma State University Tick Laboratory, for providing details on the origin of ticks from their tick colonies which are supported in part by NIAID BEI Resources. This research was supported in part by appointment of Arunachalam Ramaiah in the Postdoctoral Bioinformatics Fellowship Program administered by the Association of Public Health Laboratories (APHL) and funded by the Centers for Disease Control and Prevention (CDC) as part of Cooperative Agreement 1U60OE000103 (CFDA No. 93.322). The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the U.S. Centers for Disease Control and Prevention.

Data Submission

The Ion Torrent PGM sequence data for each sample (Table 1.1) is available at the NCBI SRA resources site under Bioproject numbers PRJNA408163 (Rhipicephalus sanguineus F23UF), PRJNA413819 (Dermacentor andersoni M9), PRJNA413914 (Dermacentor occidentalis EMCF9), PRJNA413920 (Amblyomma americanum Aam10 and Aam46), PRJNA413923 (Amblyomma maculatum Amac21, Amac50), and PRJNA413929 (Dermacentor variabilis Dvar22, Dvar200, DvarSlov, DvarF4M4, DvarFvSC4, and DvarF1SC1).

Conflict of Interest Statement

The authors declare they have no conflicts of interest affecting this work.

References

  1. Anderson JF, Magnarelli LA, Philip RN, Burgdorfer W (1986) Rickettsia rickettsii and Rickettsia montana from ixodid ticks in Connecticut. Am J Trop Med Hyg 35:187–191CrossRefGoogle Scholar
  2. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477CrossRefGoogle Scholar
  3. Bermúdez SE, Eremeeva ME, Karpathy SE, Samudio F, Zambrano ML, Zaldivar Y, Motta JA, Dasch GA (2009) Detection and identification of rickettsial agents in ticks from domestic mammals in eastern Panama. J Med Entomol 46:856–861CrossRefGoogle Scholar
  4. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New YorkGoogle Scholar
  5. Burgdorfer W, Sexton DJ, Gerloff RK, Anacker RL, Philip RN, Thomas LA (1975) Rhipicephalus sanguineus: vector of a new spotted fever group rickettsia in the United States. Infect Immun 12:205–210PubMedPubMedCentralGoogle Scholar
  6. Corbin C, Heyworth ER, Ferrari J, Hurst GD (2017) Heritable symbionts in a world of varying temperature. Heredity (Edinb) 118:10–20CrossRefGoogle Scholar
  7. Dasch GA, Shirey TB, Zambrano ML, Sheth M, Holmes ZC, Williams-Newkirk AJ (2016) Ion torrent PGM and Illumina HiSeq analysis of the metagenome of Dermacentor variabilis (Ixodidae). In: XXV international congress of entomology, Orlando, FL, September 25–30, 2016Google Scholar
  8. Dergousoff SJ, Chilton NB (2012) Association of different genetic types of Francisella-like organisms with the Rocky Mountain wood tick (Dermacentor andersoni) and the American dog tick (Dermacentor variabilis) in localities near their northern distributional limits. Appl Environ Microbiol 78:965–971CrossRefGoogle Scholar
  9. Douglas AE, Werren JH (2016) Holes in the hologenome: why host-microbe symbioses are not holobionts. MBio 7(2):e02099CrossRefGoogle Scholar
  10. Dunning Hotopp JC, Slatko BE, Foster JM (2017) Targeted enrichment and sequencing of recent endosymbiont-host lateral gene transfers. Sci Rep 7:857CrossRefGoogle Scholar
  11. Duron O, Binetruy F, Noël V, Cremaschi J, McCoy KD, Arnathau C, Plantard O, Goolsby J, Pérez de León AA, Heylen DJA, Van Oosten AR, Gottlieb Y, Baneth G, Guglielmone AA, Estrada-Peña A, Opara MN, Zenner L, Vavre F, Chevillon C (2017) Evolutionary changes in symbiont community structure in ticks. Mol Ecol 26:2905–2921CrossRefGoogle Scholar
  12. Epis S, Sassera D, Beninati T, Lo N, Beati L, Piesman J, Rinaldi L, McCoy KD, Torina A, Sacchi L, Clementi E, Genchi M, Magnino S, Bandi C (2008) Midichloria mitochondrii is widespread in hard ticks (Ixodidae) and resides in the mitochondria of phylogenetically diverse species. Parasitology 135:485–494CrossRefGoogle Scholar
  13. Eremeeva ME, Dasch GA, Silverman DJ (2003) Evaluation of a PCR assay for quantitation of Rickettsia rickettsii and closely related spotted fever group rickettsiae. J Clin Microbiol 41:5466–5472CrossRefGoogle Scholar
  14. Fornadel CM, Zhang X, Smith JD, Paddock CD, Arias JR, Norris DE (2011) High rates of Rickettsia parkeri infection in Gulf Coast ticks (Amblyomma maculatum) and identification of “Candidatus Rickettsia andeanae” from Fairfax County, Virginia. Vector Borne Zoonotic Dis 11:1535–1539CrossRefGoogle Scholar
  15. Fuerst PA, Poetter KP, Pretzman C, Perlman PS (1990) Molecular genetics of populations of intracellular bacteria: the spotted fever group rickettsiae. Ann N Y Acad Sci 590:430–438CrossRefGoogle Scholar
  16. Gerhart JG, Moses AS, Raghavan R (2016) A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci Rep 6:33670CrossRefGoogle Scholar
  17. Gillespie JJ, Joardar V, Williams KP, Driscoll T, Hostetler JB, Nordberg E, Shukla M, Walenz B, Hill CA, Nene VM, Azad AF, Sobral BW, Caler E (2011) A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 194:376–394CrossRefGoogle Scholar
  18. Gottlieb Y, Lalzar I, Klasson L (2015) Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol Evol 7:1779–1796CrossRefGoogle Scholar
  19. Henry LM, Maiden MC, Ferrari J, Godfray HC (2015) Insect life history and the evolution of bacterial mutualism. Ecol Lett 18:516–525CrossRefGoogle Scholar
  20. Jasinskas A, Zhong J, Barbour AG (2007) Highly prevalent Coxiella sp bacterium in the tick vector Amblyomma americanum. Appl Environ Microbiol 73:334–336CrossRefGoogle Scholar
  21. Jiang J, Stromdahl EY, Richards AL (2012) Detection of Rickettsia parkeri and Candidatus Rickettsia andeanae in Amblyomma maculatum Gulf Coast ticks collected from humans in the United States. Vector Borne Zoonotic Dis 12:175–182CrossRefGoogle Scholar
  22. Jones MR, Good JM (2016) Targeted capture in evolutionary and ecological genomics. Mol Ecol 25:185–202CrossRefGoogle Scholar
  23. Karpathy SE, Slater KS, Goldsmith CS, Nicholson WL, Paddock CD (2016) Rickettsia amblyommatis sp nov, a spotted fever group Rickettsia associated with multiple species of Amblyomma ticks in North, Central and South America. Int J Syst Evol Microbiol 66:5236–5243CrossRefGoogle Scholar
  24. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefGoogle Scholar
  25. Kent BN, Salichos L, Gibbons JG, Rokas A, Newton IL, Clark ME, Bordenstein SR (2011) Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture. Genome Biol Evol 3:209–218CrossRefGoogle Scholar
  26. Ketchum HR, Teel PD, Coates CJ, Strey OF, Longnecker MT (2009) Genetic variation in 12S and 16S mitochondrial rDNA genes of four geographically isolated populations of Gulf Coast ticks (Acari: Ixodidae) J Med Entomol 46:482–489CrossRefGoogle Scholar
  27. Killmaster LF, Loftis AD, Zemtsova GE, Levin ML (2014) Detection of bacterial agents in Amblyomma americanum (Acari: Ixodidae) from Georgia, USA, and the use of a multiplex assay to differentiate Ehrlichia chaffeensis and Ehrlichia ewingii. J Med Entomol 51:868–872CrossRefGoogle Scholar
  28. Kurtti TJ, Felsheim RF, Burkhardt NY, Oliver JD, Heu CC, Munderloh UG (2015) Rickettsia buchneri sp nov, a rickettsial endosymbiont of the blacklegged tick Ixodes scapularis. Int J Syst Evol Microbiol 65:965–970CrossRefGoogle Scholar
  29. Larson MA, Nalbantoglu U, Sayood K, Zentz EB, Cer RZ, Iwen PC, Francesconi SC, Bishop-Lilly KA, Mokashi VP, Sjöstedt A, Hinrichs SH (2016) Reclassification of Wolbachia persica as Francisella persica comb nov and emended description of the family Francisellaceae. Int J Syst Evol Microbiol 66:1200–1205CrossRefGoogle Scholar
  30. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595CrossRefGoogle Scholar
  31. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAM tools. Bioinformatics 25:2078–2079CrossRefGoogle Scholar
  32. Luce-Fedrow A, Wright C, Gaff HD, Sonenshine DE, Hynes WL, Richards AL (2012) In vitro propagation of “Candidatus Rickettsia andeanae” isolated from Amblyomma maculatum. FEMS Immunol Med Microbiol 64:74–81CrossRefGoogle Scholar
  33. Mixson TR, Campbell SR, Gill JS, Ginsberg HS, Reichard MV, Schulze TL, Dasch GA (2006) Prevalence of Ehrlichia, Borrelia, and rickettsial agents in Amblyomma americanum (Acari: Ixodidae) collected from nine states. J Med Entomol 43:1261–1268PubMedGoogle Scholar
  34. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190CrossRefGoogle Scholar
  35. Niebylski ML, Schrumpf ME, Burgdorfer W, Fischer ER, Gage KL, Schwan TG (1997) Rickettsia peacockii sp nov, a new species infecting wood ticks, Dermacentor andersoni, in western Montana. Int J Syst Bacteriol 47:446–452CrossRefGoogle Scholar
  36. O’Fallon B (2008) Population structure, levels of selection, and the evolution of intracellular symbionts. Evolution 62:361–373CrossRefGoogle Scholar
  37. Oliva Chávez AS, Shaw DK, Munderloh UG, Pedra JH (2017) Tick humoral responses: marching to the beat of a different drummer. Front Microbiol 14:223Google Scholar
  38. Paddock CD, Denison AM, Dryden MW, Noden BH, Lash RR, Abdelghani SS, Evans AE, Kelly AR, Hecht JA, Karpathy SE, Ganta RR, Little SE (2015) High prevalence of “Candidatus Rickettsia andeanae” and apparent exclusion of Rickettsia parkeri in adult Amblyomma maculatum (Acari: Ixodidae) from Kansas and Oklahoma. Ticks Tick Borne Dis 6:297–302CrossRefGoogle Scholar
  39. Padgett KA, Bonilla D, Eremeeva ME, Glaser C, Lane RS, Porse CC, Castro MB, Messenger S, Espinosa A, Hacker J, Kjemtrup A, Ryan B, Scott JJ, Hu R, Yoshimizu MH, Dasch GA, Kramer V (2016) The Eco-epidemiology of Pacific Coast tick fever in California. PLoS Negl Trop Dis 5:e0005020CrossRefGoogle Scholar
  40. Pagac BB, Miller MK, Mazzei MC, Nielsen DH, Jiang J, Richards AL (2014) Rickettsia parkeri and Rickettsia montanensis, Kentucky and Tennessee, USA. Emerg Infect Dis 20:1750–1752CrossRefGoogle Scholar
  41. Ramaiah A, Williams-Newkirk AJ, Frace MA, Zambrano ML, Dasch GA (2017) Evolution of the genomes of the Coxiella-like endosymbionts of ticks. J Mississippi Acad Sci 62:21Google Scholar
  42. Scoles GA (2004) Phylogenetic analysis of the Francisella-like endosymbionts of Dermacentor ticks. J Med Entomol 41:277–286CrossRefGoogle Scholar
  43. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069CrossRefGoogle Scholar
  44. Serbus LR, Rodriguez BG, Sharmin Z, Momtaz AJMZ, Christensen S (2017) Predictive genomic analyses inform the basis for vitamin metabolism and provisioning in bacteria-arthropod endosymbiosis. G3 (Bethesda) 7:1887–1898CrossRefGoogle Scholar
  45. Smith TA, Driscoll T, Gillespie JJ, Raghavan R (2015) A Coxiella-like endosymbiont is a potential vitamin source for the Lone Star tick. Genome Biol Evol 7:831–838CrossRefGoogle Scholar
  46. Stephenson N, Blaney A, Clifford D, Gabriel M, Wengert G, Foley P, Brown RN, Higley M, Buckenberger-Mantovani S, Foley J (2017) Diversity of rickettsiae in a rural community in northern California. Ticks Tick Borne Dis 8:526–531CrossRefGoogle Scholar
  47. Stromdahl EY, Jiang J, Vince M, Richards AL (2011) Infrequency of Rickettsia rickettsii in Dermacentor variabilis removed from humans, with comments on the role of other human-biting ticks associated with spotted fever group rickettsiae in the United States. Vector Borne Zoonotic Dis 11:969–977CrossRefGoogle Scholar
  48. Trout Fryxell RT, Steelman CD, Szalanski AL, Billingsley PM, Williamson PC (2015) Molecular detection of Rickettsia species within ticks (Acari: Ixodidae) collected from Arkansas United States. J Med Entomol 52:500–508CrossRefGoogle Scholar
  49. Wernegreen JJ (2012) Strategies of genomic integration within insect-bacterial mutualisms. Biol Bull 223:112–122CrossRefGoogle Scholar
  50. Wernegreen JJ (2015) Endosymbiont evolution: predictions from theory and surprises from genomes. Ann NY Acad Sci 1360:16–35CrossRefGoogle Scholar
  51. Whitman TJ, Richards AL, Paddock CD, Tamminga CL, Sniezek PJ, Jiang J, Byers DK, Sanders JW (2007) Rickettsia parkeri infection after tick bite, Virginia. Emerg Infect Dis 13:334–336CrossRefGoogle Scholar
  52. Wikswo ME, Hu R, Dasch GA, Krueger L, Arugay A, Jones K, Hess B, Bennett S, Kramer V, Eremeeva ME (2008) Detection and identification of spotted fever group rickettsiae in Dermacentor species from southern California. J Med Entomol 45:509–516CrossRefGoogle Scholar
  53. Williams-Newkirk AJ, Burroughs M, Changayil SS, Dasch GA (2015) The mitochondrial genome of the lone star tick (Amblyomma americanum). Ticks Tick Borne Dis 6:793–801CrossRefGoogle Scholar
  54. Williams-Newkirk AJ, Rowe LA, Mixson-Hayden TR, Dasch GA (2012) Presence, genetic variability, and potential significance of “Candidatus Midichloria mitochondrii” in the lone star tick Amblyomma americanum. Exp Appl Acarol 58:291–300CrossRefGoogle Scholar
  55. Williams-Newkirk AJ, Rowe LA, Mixson-Hayden TR, Dasch GA (2014) Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum). PLoS ONE 9:e102130CrossRefGoogle Scholar
  56. Wood H, Dillon L, Patel SN, Ralevski F (2016) Prevalence of Rickettsia species in Dermacentor variabilis ticks from Ontario, Canada. Ticks Tick Borne Dis 7:1044–1046CrossRefGoogle Scholar
  57. Yunik ME, Galloway TD, Lindsay LR (2015) Assessment of prevalence and distribution of spotted fever group rickettsiae in Manitoba, Canada, in the American dog tick, Dermacentor variabilis (Acari: Ixodidae). Vector Borne Zoonotic Dis 15:103–108CrossRefGoogle Scholar
  58. Zhong J (2012) Coxiella-like endosymbionts. Adv Exp Med Biol 984:365–379CrossRefGoogle Scholar
  59. Zhong J, Jasinskas A, Barbour AG (2007) Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE 2:e405CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gregory A. Dasch
    • 1
    Email author
  • Arunachalam Ramaiah
    • 1
  • Zachary C. Holmes
    • 1
  • Maria L. Zambrano
    • 1
  • T. Brian Shirey
    • 2
  1. 1.Rickettsial Zoonoses BranchUS Centers for Disease Control and PreventionAtlantaUSA
  2. 2.Enteric Diseases Laboratory BranchUS Centers for Disease Control and PreventionAtlantaUSA

Personalised recommendations