Skip to main content

Function Private Predicate Encryption for Low Min-Entropy Predicates

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2019 (PKC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11443))

Included in the following conference series:

Abstract

In this work, we propose new constructions for zero inner-product encryption (ZIPE) and non-zero inner-product encryption (NIPE) from prime-order bilinear pairings, which are both attribute and function private in the public-key setting.

  • Our ZIPE scheme is adaptively attribute private under the standard Matrix DDH assumption for unbounded collusions. It is additionally computationally function private under a min-entropy variant of the Matrix DDH assumption for predicates sampled from distributions with super-logarithmic min-entropy. Existing (statistically) function private ZIPE schemes due to Boneh et al. [Crypto’13, Asiacrypt’13] necessarily require predicate distributions with significantly larger min-entropy in the public-key setting.

  • Our NIPE scheme is adaptively attribute private under the standard Matrix DDH assumption, albeit for bounded collusions. In addition, it achieves computational function privacy under a min-entropy variant of the Matrix DDH assumption for predicates sampled from distributions with super-logarithmic min-entropy. To the best of our knowledge, existing NIPE schemes from bilinear pairings were neither attribute private nor function private.

Our constructions are inspired by the linear FE constructions of Agrawal et al. [Crypto’16] and the simulation secure ZIPE of Wee [TCC’17]. In our ZIPE scheme, we show a novel way of embedding two different hard problem instances in a single secret key - one for unbounded collusion-resistance and the other for function privacy. For NIPE, we introduce new techniques for simultaneously achieving attribute and function privacy. We further show that the two constructions naturally generalize to a wider class of predicate encryption schemes such as subspace membership, subspace non-membership and hidden-vector encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The PE schemes in [12, 13] are not function private, even in the weaker computational setting, if the min-entropy requirements are relaxed any further.

  2. 2.

    The restriction on the size of the message space \(\mathcal {M}\) is necessary for correctness as explained subsequently. Note that this restriction does not prevent \(\mathcal {M}\) from being exponentially large.

  3. 3.

    The argument follows from the fact that both \(\mathbf {y}\) and \(\mathbf {r}\) are uniformly random vectors in \(\mathbb {Z}^m_q\) and \(\mathbb {Z}^k_q\), respectively, and \(|\mathcal {M}|<|\mathbb {G}_T|^{1/2}\).

  4. 4.

    Due to paucity of space, we only provide brief proof sketches in several cases. We refer the reader to the full version of the paper [35] for the detailed proofs.

References

  1. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions. J. Cryptol. 21, 350–391 (2008)

    Article  MathSciNet  Google Scholar 

  2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  3. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: On the practical security of inner product functional encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_35

    Chapter  Google Scholar 

  4. Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public trace and revoke from standard assumptions: extended abstract. In: CCS 2017, pp. 2277–2293 (2017)

    Google Scholar 

  5. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_2

    Chapter  Google Scholar 

  6. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  7. Attrapadung, N., Libert, B.: Functional encryption for inner product: achieving constant-size ciphertexts with adaptive security or support for negation. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_23

    Chapter  Google Scholar 

  8. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_20

    Chapter  Google Scholar 

  9. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_30

    Chapter  Google Scholar 

  10. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  11. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact Garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30

    Chapter  Google Scholar 

  12. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_26

    Chapter  MATH  Google Scholar 

  13. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_14

    Chapter  Google Scholar 

  14. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_29

    Chapter  Google Scholar 

  15. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_12

    Chapter  Google Scholar 

  16. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20

    Chapter  Google Scholar 

  17. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_19

    Chapter  Google Scholar 

  18. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055717

    Chapter  Google Scholar 

  19. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  20. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_7

    Chapter  Google Scholar 

  21. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

    Chapter  Google Scholar 

  22. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_27

    Chapter  Google Scholar 

  23. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_1

    Chapter  Google Scholar 

  24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: ACM STOC 2008, pp. 197–206 (2008)

    Google Scholar 

  25. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_30

    Chapter  Google Scholar 

  26. Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to standard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_21

    Chapter  Google Scholar 

  27. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. J. ACM 62(6), 45:1–45:33 (2015)

    Article  MathSciNet  Google Scholar 

  28. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_25

    Chapter  Google Scholar 

  29. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)

    Google Scholar 

  30. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. J. Cryptol. 26(2), 191–224 (2013)

    Article  MathSciNet  Google Scholar 

  31. Lewko, A.B.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_20

    Chapter  MATH  Google Scholar 

  32. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27

    Chapter  Google Scholar 

  33. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_35

    Chapter  Google Scholar 

  34. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_22

    Chapter  Google Scholar 

  35. Patranabis, S., Mukhopadhyay, D., Ramanna, S.C.: Function private predicate encryption for low min-entropy predicates. IACR Cryptology ePrint Archive, p. 1250 (2018)

    Google Scholar 

  36. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_14

    Chapter  Google Scholar 

  37. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_8

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers of PKC 2019 for useful comments. Patranabis and Mukhopadhyay are patially supported by Qualcomm India Innovation Fellowship grant. Mukhopadhyay is partially supported by a DST India Swarnajayanti Fellowship. Ramanna is partially supported by DST India Inspire Faculty award. We stress that the opinions, findings and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the funding organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sikhar Patranabis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patranabis, S., Mukhopadhyay, D., Ramanna, S.C. (2019). Function Private Predicate Encryption for Low Min-Entropy Predicates. In: Lin, D., Sako, K. (eds) Public-Key Cryptography – PKC 2019. PKC 2019. Lecture Notes in Computer Science(), vol 11443. Springer, Cham. https://doi.org/10.1007/978-3-030-17259-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17259-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17258-9

  • Online ISBN: 978-3-030-17259-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics