Skip to main content

Factoring Products of Braids via Garside Normal Form

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2019 (PKC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11443))

Included in the following conference series:

Abstract

Braid groups are infinite non-abelian groups naturally arising from geometric braids. For two decades they have been proposed for cryptographic use. In braid group cryptography public braids often contain secret braids as factors and it is hoped that rewriting the product of braid words hides individual factors. We provide experimental evidence that this is in general not the case and argue that under certain conditions parts of the Garside normal form of factors can be found in the Garside normal form of their product. This observation can be exploited to decompose products of braids of the form ABC when only B is known.

Our decomposition algorithm yields a universal forgery attack on WalnutDSATM, which is one of the 20 proposed signature schemes that are being considered by NIST for standardization of quantum-resistant public-key cryptography. Our attack on WalnutDSATM can universally forge signatures within seconds for both the 128-bit and 256-bit security level, given one random message-signature pair. The attack worked on 99.8% and 100% of signatures for the 128-bit and 256-bit security levels in our experiments.

Furthermore, we show that the decomposition algorithm can be used to solve instances of the conjugacy search problem and decomposition search problem in braid groups. These problems are at the heart of other cryptographic schemes based on braid groups.

The full version can be found in the IACR eprint archive as article 2018/1142.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. About SecureRF. https://www.securerf.com/about-us/. Accessed 21 Nov 2018

  2. Anshel, I., Atkins, D., Goldfeld, P., Gunnels, D.: Kayawood, a key agreement protocol (2017). Preprint: https://eprint.iacr.org/2017/1162. Version 30 Nov 2017

  3. Anshel, I., Anshel, M., Fisher, B., Goldfeld, D.: New key agreement protocols in braid group cryptography. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 13–27. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_2

    Chapter  MATH  Google Scholar 

  4. Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Math. Res. Lett. 6, 287–292 (1999)

    Article  MathSciNet  Google Scholar 

  5. Anshel, I., Anshel, M., Goldfeld, D., Lemieux, S.: Key agreement, the algebraic eraser, and lightweight cryptography. Contemp. Math. 418, 1–34 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Anshel, I., Atkins, D., Goldfeld, D., Gunnells, P.E.: WalnutDSA: a quantum resistant group theoretic digital signature algorithm (2017). Preprint available at https://eprint.iacr.org/2017/058, 30 Nov 2017

  7. Artin, E.: Theorie der Zöpfe. Abhandlungen aus dem mathematischen Seminar der Universität Hamburg. 4, 47–72 (1925)

    Article  MathSciNet  Google Scholar 

  8. Ben-Zvi, A., Blackburn, S.R., Tsaban, B.: A practical cryptanalysis of the Algebraic Eraser. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 179–189. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_7

    Chapter  Google Scholar 

  9. Ben-Zvi, A., Kalka, A., Tsaban, B.: Cryptanalysis via algebraic spans. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 255–274. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_9

    Chapter  Google Scholar 

  10. Beullens, W., Blackburn, S.: Practical attacks against the Walnut digital signature scheme (2018). Accepted to Asiacrypt 2018. Preprint: https://eprint.iacr.org/2018/318/20180404

  11. Birman, J., Ko, K.H., Lee, S.J.: A new approach to the word and conjugacy problems in the braid groups. Adv. Math. 139(2), 322–353 (1998)

    Article  MathSciNet  Google Scholar 

  12. Birman, J.S.: Braids, Links, and Mapping Class Groups. (AM-82), vol. 82. Princeton University Press, Princeton (1975)

    Google Scholar 

  13. Birman, J.S., Gebhardt, V., González-Meneses, J.: Conjugacy in Garside groups I: cyclings, powers and rigidity. Groups Geom. Dyn. 1(3), 221–279 (2007)

    Article  MathSciNet  Google Scholar 

  14. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  15. Bressaud, X.: A normal form for braids. J. Knot Theory Ramif. 17(06), 697–732 (2008)

    Article  MathSciNet  Google Scholar 

  16. Burau, W.: Über Zopfgruppen und gleichsinnig verdrillte Verkettungen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 11, 179–186 (1935)

    Article  MathSciNet  Google Scholar 

  17. Dehornoy, P.: A fast method for comparing braids. Adv. Math. 125(2), 200–235 (1997)

    Article  MathSciNet  Google Scholar 

  18. Dehornoy, P.: Alternating normal forms for braids and locally Garside monoids. J. Pure Appl. Algebra 212(11), 2413–2439 (2008)

    Article  MathSciNet  Google Scholar 

  19. Ding, J., Yang, B.Y.: Multivariate public key cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 193–241. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_6

    Chapter  Google Scholar 

  20. Elrifai, E.A., Morton, H.R.: Algorithms for positive braids. Q. J. Math. 45(180), 479–498 (1994)

    Article  MathSciNet  Google Scholar 

  21. Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W.: Word Processing in Groups (1992)

    Google Scholar 

  22. Garber, D.: Braid group cryptography. In: Braids: Introductory Lectures On Braids, Configurations and Their Applications, pp. 329–403. World Scientific (2010)

    Google Scholar 

  23. Garside, F.A.: The braid group and other groups. Q. J. Math. 20(1), 235–254 (1969)

    Article  MathSciNet  Google Scholar 

  24. Gebhardt, V.: A new approach to the conjugacy problem in Garside groups. J. Algebra 292(1), 282–302 (2005)

    Article  MathSciNet  Google Scholar 

  25. Gebhardt, V., González-Meneses, J.: The cyclic sliding operation in Garside groups. Mathematische Zeitschrift 265(1), 85–114 (2010)

    Article  MathSciNet  Google Scholar 

  26. Gebhardt, V., González-Meneses, J.: Generating random braids. J. Comb. Theory Ser. A 120(1), 111–128 (2013)

    Article  MathSciNet  Google Scholar 

  27. Gebhardt, V., Tawn, S.: Normal forms of random braids. J. Algebra 408, 115–137 (2014)

    Article  MathSciNet  Google Scholar 

  28. Goldwasser, S., Bellare, M.: Lecture notes on cryptography. Summer course “Cryptography and computer security” at MIT (1996)

    Google Scholar 

  29. Hart, D., Kim, D., Micheli, G., Pascual-Perez, G., Petit, C., Quek, Y.: A practical cryptanalysis of WalnutDSA\(^{\text{ TM }}\). In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 381–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_13

    Chapter  Google Scholar 

  30. Hughes, J., Tannenbaum, A.: Length-based attacks for certain group based encryption rewriting systems. arXiv preprint cs/0306032 (2003)

    Google Scholar 

  31. Kalka, A., Teicher, M., Tsaban, B.: Short expressions of permutations as products and cryptanalysis of the Algebraic Eraser. Adv. Appl. Math. 49(1), 57–76 (2012)

    Article  MathSciNet  Google Scholar 

  32. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)

    Article  MathSciNet  Google Scholar 

  33. Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J.S., Park, C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_10

    Chapter  Google Scholar 

  34. Kotov, M., Menshov, A., Ushakov, A.: An attack on the Walnut digital signature algorithm. Des. Codes Crypt. 1–20 (2018)

    Google Scholar 

  35. McEliece, R.: A public-key cryptosystem based on algebraic coding theory. Deep. Space Netw. Prog. Rep. 44, 114–116 (1978)

    Google Scholar 

  36. Merz, S.P.: Non obfuscating power of Garside normal forms (2018). GitHub repository at https://github.com/SimonMerz/Non-obfuscating-power-of-Garside-normal-forms

  37. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5

    Chapter  MATH  Google Scholar 

  38. Myasnikov, A.D., Ushakov, A.: Length based attack and braid groups: cryptanalysis of Anshel-Anshel-Goldfeld key exchange protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 76–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_6

    Chapter  Google Scholar 

  39. National Institute for Standards and Technology (NIST): Post-quantum crypto standardization (2016). https://csrc.nist.gov/projects/post-quantum-cryptography

  40. NIST PQC Forum. https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum. Accessed 21 Nov 2018

  41. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134. IEEE (1994)

    Google Scholar 

  42. Shpilrain, V., Ushakov, A.: Thompson’s group and public key cryptography. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 151–163. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_11

    Chapter  MATH  Google Scholar 

  43. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235 (2010)

    Article  MathSciNet  Google Scholar 

  44. Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12(1), 1–28 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ward Beullens and the anonymous reviewers for their helpful feedback. This work was produced as part of a master’s thesis of the first author at the University of Oxford. He is now supported by the EPSRC as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/P009301/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon-Philipp Merz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merz, SP., Petit, C. (2019). Factoring Products of Braids via Garside Normal Form. In: Lin, D., Sako, K. (eds) Public-Key Cryptography – PKC 2019. PKC 2019. Lecture Notes in Computer Science(), vol 11443. Springer, Cham. https://doi.org/10.1007/978-3-030-17259-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17259-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17258-9

  • Online ISBN: 978-3-030-17259-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics