Skip to main content

Generic Constructions of Robustly Reusable Fuzzy Extractor

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2019 (PKC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11443))

Included in the following conference series:

Abstract

Robustly reusable Fuzzy Extractor (rrFE) considers reusability and robustness simultaneously. We present two approaches to the generic construction of rrFE. Both of approaches make use of a secure sketch and universal hash functions. The first approach also employs a special pseudo-random function (PRF), namely unique-input key-shift (ui-ks) secure PRF, and the second uses a key-shift secure auxiliary-input authenticated encryption (AIAE). The ui-ks security of PRF (resp. key-shift security of AIAE), together with the homomorphic properties of secure sketch and universal hash function, guarantees the reusability and robustness of rrFE. Meanwhile, we show two instantiations of the two approaches respectively. The first instantiation results in the first rrFE from the LWE assumption, while the second instantiation results in the first rrFE from the DDH assumption over non-pairing groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As noted by Galbraith [13], the symmetric pairings (i.e., Type 1 pairings) are now essentially dead and it would be better in future to design protocols that do not require Type 1 pairings.

References

  1. Alamélou, Q., et al.: Pseudoentropic isometries: a new framework for fuzzy extractor reusability. In: Kim, J., Ahn, G., Kim, S., Kim, Y., López, J., Kim, T. (eds.) AsiaCCS 2018, pp. 673–684. ACM (2018). https://doi.org/10.1145/3196494.3196530

  2. Apon, D., Cho, C., Eldefrawy, K., Katz, J.: Efficient, reusable fuzzy extractors from LWE. In: Dolev, S., Lodha, S. (eds.) CSCML 2017. LNCS, vol. 10332, pp. 1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60080-2_1

    Chapter  Google Scholar 

  3. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_20

    Chapter  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247–255 (2000)

    Article  Google Scholar 

  5. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44(6), 2724–2742 (1998). https://doi.org/10.1109/18.720553

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) CCS 2004, pp. 82–91. ACM (2004). https://doi.org/10.1145/1030083.1030096

  7. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.D.: Secure remote authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_9

    Chapter  Google Scholar 

  8. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors for low-entropy distributions. In: Fischlin, M., Coron, J. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_5

    Chapter  Google Scholar 

  9. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_27

    Chapter  Google Scholar 

  10. Dodis, Y., Katz, J., Reyzin, L., Smith, A.D.: Robust fuzzy extractors and authenticated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 232–250. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_14

    Chapter  Google Scholar 

  11. Dodis, Y., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  12. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_10

    Chapter  Google Scholar 

  13. Galbraith, S.: New discrete logarithm records, and the death of type 1 pairings. https://ellipticnews.wordpress.com/2014/02/01/new-discrete-logarithm-records-and-the-death-of-type-1-pairings/

  14. Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryption for polynomial functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 307–338. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_11

    Chapter  Google Scholar 

  15. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 520–536. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_31

    Chapter  Google Scholar 

  16. Kanukurthi, B., Reyzin, L.: An improved robust fuzzy extractor. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 156–171. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_11

    Chapter  Google Scholar 

  17. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_26

    Chapter  Google Scholar 

  18. Lewi, K., Montgomery, H.W., Raghunathan, A.: Improved constructions of PRFs secure against related-key attacks. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_4

    Chapter  Google Scholar 

  19. Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition, 2nd edn. Springer, London (2011). https://doi.org/10.1007/978-0-85729-932-1

    Book  MATH  Google Scholar 

  20. Marasco, E., Ross, A.: A survey on antispoofing schemes for fingerprint recognition systems. ACM Comput. Surv. 47(2), 28:1–28:36 (2014). https://doi.org/10.1145/2617756

    Article  Google Scholar 

  21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005). https://doi.org/10.1145/1060590.1060603

  22. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: CCS 2010, pp. 237–249 (2010). https://doi.org/10.1145/1866307.1866335

  23. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: Proceedings of the 44th Annual Design Automation Conference, pp. 9–14 (2007)

    Google Scholar 

  24. Wen, Y., Liu, S.: Reusable fuzzy extractor from LWE. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 13–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_2

    Chapter  Google Scholar 

  25. Wen, Y., Liu, S.: Robustly reusable fuzzy extractor from standard assumptions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 459–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_17

    Chapter  Google Scholar 

  26. Wen, Y., Liu, S., Gu, D.: Generic constructions of robustly reusable fuzzy extractor. Cryptology ePrint Archive, Report 2019/018 (2019). https://eprint.iacr.org/2019/018

  27. Wen, Y., Liu, S., Han, S.: Reusable fuzzy extractor from the decisional Diffie-Hellman assumption. Des. Codes Crypt. 86(11), 2495–2512 (2018). https://doi.org/10.1007/s10623-018-0459-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their valuable comments. Yunhua Wen and Shengli Liu are supported by the National Natural Science Foundation of China (Grant No. 61672346). Dawu Gu is sponsored by the Natural Science Foundation of China (Grant No. 61472250) and Program of Shanghai Academic Research Leader (16XD1401300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, Y., Liu, S., Gu, D. (2019). Generic Constructions of Robustly Reusable Fuzzy Extractor. In: Lin, D., Sako, K. (eds) Public-Key Cryptography – PKC 2019. PKC 2019. Lecture Notes in Computer Science(), vol 11443. Springer, Cham. https://doi.org/10.1007/978-3-030-17259-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17259-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17258-9

  • Online ISBN: 978-3-030-17259-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics