Skip to main content

Group Signatures with Selective Linkability

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2019 (PKC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11442))

Included in the following conference series:

Abstract

Group signatures allow members of a group to anonymously produce signatures on behalf of the group. They are an important building block for privacy-enhancing applications, e.g., enabling user data to be collected in authenticated form while preserving the user’s privacy. The linkability between the signatures thereby plays a crucial role for balancing utility and privacy: knowing the correlation of events significantly increases the utility of the data but also severely harms the user’s privacy. Therefore group signatures are unlinkable per default, but either support linking or identity escrow through a dedicated central party or offer user-controlled linkability. However, both approaches have significant limitations. The former relies on a fully trusted entity and reveals too much information, and the latter requires exact knowledge of the needed linkability at the moment when the signatures are created. However, often the exact purpose of the data might not be clear at the point of data collection. In fact, data collectors tend to gather large amounts of data at first, but will need linkability only for selected, small subsets of the data. We introduce a new type of group signature that provides a more flexible and privacy-friendly access to such selective linkability. When created, all signatures are fully unlinkable. Only when strictly needed or desired, should the required pieces be made linkable with the help of a central entity. For privacy, this linkability is established in an oblivious and non-transitive manner. We formally define the requirements for this new type of group signatures and provide an efficient instantiation that provably satisfies these requirements under discrete-logarithm based assumptions.

L. Garms—Work done as an intern at IBM Research – Zurich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For sake of simplicity we state the algorithms for the setting where the requester and receiver of conversions is the same party, namely the verifier. However, our algorithms work in a public key setting to facilitate more general settings as well.

References

  1. EU general data protection regulation. https://gdpr-info.eu

  2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_16

    Chapter  Google Scholar 

  3. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006). https://doi.org/10.1007/11832072_8

    Chapter  Google Scholar 

  4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38

    Chapter  Google Scholar 

  5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11

    Chapter  Google Scholar 

  6. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)

    Article  Google Scholar 

  7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin and Camenisch [13], pp. 56–73

    Google Scholar 

  8. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

    Article  MathSciNet  Google Scholar 

  9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3

    Chapter  Google Scholar 

  10. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_7

    Chapter  Google Scholar 

  11. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri, V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, pp. 132–145. ACM Press, October 2004

    Google Scholar 

  12. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources. In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol. 6101, pp. 181–195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13869-0_12

    Chapter  Google Scholar 

  13. Cachin, C., Camenisch, J.L. (eds.): EUROCRYPT 2004. LNCS, vol. 3027. Springer, Heidelberg (2004). https://doi.org/10.1007/b97182

    Book  MATH  Google Scholar 

  14. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust 2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45572-3_1

    Chapter  Google Scholar 

  15. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anonymous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_10

    Chapter  Google Scholar 

  16. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_25

    Chapter  Google Scholar 

  17. Camenisch, J., Lehmann, A.: (Un)linkable pseudonyms for governmental databases. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1467–1479. ACM Press, October 2015

    Google Scholar 

  18. Camenisch, J., Lehmann, A.: Privacy-preserving user-auditable pseudonym systems. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 269–284. IEEE (2017)

    Google Scholar 

  19. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  20. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8

    Chapter  Google Scholar 

  21. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

    Chapter  Google Scholar 

  22. Chaum, D.: Some weaknesses of “weaknesses of undeniable signatures” (rump session). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 554–556. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_54

    Chapter  Google Scholar 

  23. ElGamal, T.: On computing logarithms over finite fields. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 396–402. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_28

    Chapter  Google Scholar 

  24. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  25. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)

    Article  MathSciNet  Google Scholar 

  26. Galindo, D., Verheul, E.R.: Microdata sharing via pseudonymization. Joint UNECE/Eurostat work session on statistical data confidentiality (2007)

    Google Scholar 

  27. Garms, L., Lehmann, A.: Group signatures with selective linkability (2019). https://eprint.iacr.org/2019/027

  28. Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_10

    Chapter  Google Scholar 

  29. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Short group signatures with controllable linkability. In: 2011 Workshop on Lightweight Security & Privacy: Devices, Protocols and Applications (LightSec), pp. 44–52. IEEE (2011)

    Google Scholar 

  30. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Group signatures with controllable linkability for dynamic membership. Inf. Sci. 222, 761–778 (2013)

    Article  MathSciNet  Google Scholar 

  31. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin and Camenisch [13], pp. 571–589

    Google Scholar 

  32. Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_12

    Chapter  Google Scholar 

  33. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1

    Chapter  Google Scholar 

  34. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 609–627. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_36

    Chapter  Google Scholar 

  35. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46513-8_14

    Chapter  Google Scholar 

  36. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  37. Slamanig, D., Spreitzer, R., Unterluggauer, T.: Adding controllable linkability to pairing-based group signatures for free. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 388–400. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0_23

    Chapter  Google Scholar 

Download references

Acknowledgments

The first author is supported by the UK Government as part of the CDT in Cyber Security program at Royal Holloway University of London (EP/K035584/1). The second author was supported by the European Union’s Horizon 2020 research and innovation program under Grant Agreement Number 768953 (ICT4CART).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Garms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garms, L., Lehmann, A. (2019). Group Signatures with Selective Linkability. In: Lin, D., Sako, K. (eds) Public-Key Cryptography – PKC 2019. PKC 2019. Lecture Notes in Computer Science(), vol 11442. Springer, Cham. https://doi.org/10.1007/978-3-030-17253-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17253-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17252-7

  • Online ISBN: 978-3-030-17253-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics