Skip to main content

Efficient Attribute-Based Signatures for Unbounded Arithmetic Branching Programs

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2019 (PKC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11442))

Included in the following conference series:

Abstract

This paper presents the first attribute-based signature (ABS) scheme in which the correspondence between signers and signatures is captured in an arithmetic model of computation. Specifically, we design a fully secure, i.e., adaptively unforgeable and perfectly signer-private ABS scheme for signing policies realizable by arithmetic branching programs (ABP), which are a quite expressive model of arithmetic computations. On a more positive note, the proposed scheme places no bound on the size and input length of the supported signing policy ABP’s, and at the same time, supports the use of an input attribute for an arbitrary number of times inside a signing policy ABP, i.e., the so called unbounded multi-use of attributes. The size of our public parameters is constant with respect to the sizes of the signing attribute vectors and signing policies available in the system. The construction is built in (asymmetric) bilinear groups of prime order, and its unforgeability is derived in the standard model under (asymmetric version of) the well-studied decisional linear (DLIN) assumption coupled with the existence of standard collision resistant hash functions. Due to the use of the arithmetic model as opposed to the boolean one, our ABS scheme not only excels significantly over the existing state-of-the-art constructions in terms of concrete efficiency, but also achieves improved applicability in various practical scenarios. Our principal technical contributions are (a) extending and refining the techniques of Okamoto and Takashima [PKC 2011, PKC 2013], which were originally developed in the context of boolean span programs, to the arithmetic setting; and (b) innovating new ideas to allow unbounded multi-use of attributes inside ABP’s, which themselves are of unbounded size and input length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_3

    Chapter  Google Scholar 

  2. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. SIAM J. Comput. 43(2), 905–929 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_30

    Chapter  Google Scholar 

  4. Datta, P., Dutta, R., Mukhopadhyay, S.: Attribute-based signatures for turing machines. Cryptology ePrint Archive, Report 2017/801

    Google Scholar 

  5. El Kaafarani, A., El Bansarkhani, R.: Post-quantum attribute-based signatures from lattice assumptions. Cryptology ePrint Archive, Report 2016/823

    Google Scholar 

  6. El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_17

    Chapter  Google Scholar 

  7. El Kaafarani, A., Katsumata, S.: Attribute-based signatures for unbounded circuits in the ROM and efficient instantiations from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 89–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_4

    Chapter  Google Scholar 

  8. Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)

    Article  MathSciNet  Google Scholar 

  9. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  10. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signatures for threshold predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 51–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_4

    Chapter  Google Scholar 

  11. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_22

    Chapter  Google Scholar 

  12. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: ITCS 1997, pp. 174–183. IEEE (1997)

    Google Scholar 

  13. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_54

    Chapter  MATH  Google Scholar 

  14. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference 1993, pp. 102–111. IEEE (1993)

    Google Scholar 

  15. Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic secure computation with oblivious transfer. In: ACM-CCS 2016, pp. 830–842. ACM (2016)

    Google Scholar 

  16. Kowalczyk, L., Liu, J., Malkin, T., Meiyappan, K.: Mitigating the one-use restriction in attribute-based encryption. Cryptology ePrint Archive, Report 2018/645

    Google Scholar 

  17. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its applications. In: ASIACCS 2010, pp. 60–69. ACM (2010)

    Google Scholar 

  18. Li, J., Kim, K.: Attribute-based ring signatures. Cryptology ePrint Archive, Report 2008/394

    Google Scholar 

  19. Maji, H., Prabhakaran, M., Rosulek, M.: Attribute-based signatures: achieving attribute-privacy and collusion-resistance. Cryptology ePrint Archive, Report 2008/328

    Google Scholar 

  20. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_24

    Chapter  Google Scholar 

  21. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. Cryptology ePrint Archive, Report 2010/595

    Google Scholar 

  22. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_9

    Chapter  Google Scholar 

  23. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_3

    Chapter  Google Scholar 

  24. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. Cryptology ePrint Archive, Report 2011/700

    Google Scholar 

  25. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11

    Chapter  Google Scholar 

  26. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_22

    Chapter  Google Scholar 

  27. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_13

    Chapter  Google Scholar 

  28. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. Commun. ACM 59(2), 103–112 (2016)

    Article  Google Scholar 

  29. Sakai, Y., Attrapadung, N., Hanaoka, G.: Attribute-based signatures for circuits from bilinear map. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 283–300. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_11

    Chapter  Google Scholar 

  30. Sakai, Y., Katsumata, S., Attrapadung, N., Hanaoka, G.: Attribute-based signatures for unbounded languages from standard assumptions. Cryptology ePrint Archive, Report 2018/842

    Google Scholar 

  31. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and their application to anonymous credential systems. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_13

    Chapter  Google Scholar 

  32. Takashima, K.: New proof techniques for DLIN-based adaptively secure attribute-based encryption. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 85–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0_5

    Chapter  Google Scholar 

  33. Tang, F., Li, H., Liang, B.: Attribute-based signatures for circuits from multilinear maps. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 54–71. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0_4

    Chapter  Google Scholar 

  34. Tsabary, R.: An equivalence between attribute-based signatures and homomorphic signatures, and new constructions for both. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_16

    Chapter  Google Scholar 

  35. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

  36. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratish Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datta, P., Okamoto, T., Takashima, K. (2019). Efficient Attribute-Based Signatures for Unbounded Arithmetic Branching Programs. In: Lin, D., Sako, K. (eds) Public-Key Cryptography – PKC 2019. PKC 2019. Lecture Notes in Computer Science(), vol 11442. Springer, Cham. https://doi.org/10.1007/978-3-030-17253-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17253-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17252-7

  • Online ISBN: 978-3-030-17253-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics