Skip to main content

Overview on Robotic Training

  • Chapter
  • First Online:
  • 596 Accesses

Abstract

During the past recent years, there has been a significant increase in the use of robotic-assisted surgery in the world, probably because the robotic system helps to overcome the added challenges of performing these procedures in a minimally invasive fashion presumably and facilitates a more predictable and safer outcome. Upon comparison between open surgery and minimally invasive robotic approach, the benefits of the last are similar to those pertaining to laparoscopy: a recent study suggests that robotic-assisted surgery leads to a decreased length of stay and less possibility of death for 90% of patients, when compared to open surgery. Despite all of the perks pertaining robotic surgery, it has some major limitations, such as the steep learning curve related to the performance of robotic-assisted laparoscopic procedures. One potential solution for this matter is the use of virtual reality simulators, which have been shown by some studies to be able to decrease this learning curve, despite being criticized by other researchers. Up until now, there is not a standardized training method for robotic surgery, although the use of virtual reality simulation is of significant importance in these current methods. Therefore, the point of this review is to specify the current training method for robotic surgery, pointing out the reasons for the use of such methods, its benefits and limitations, and, finally, to determine if the current certification model is suitable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wright JD, Ananth CV, Lewin SN. Robotically assisted vs. laparoscopic hysterectomy among women with benign gynecologic disease. JAMA. 2013;309(7):689–98.

    Article  CAS  PubMed  Google Scholar 

  2. Culligan P, et al. Predictive validity of a training protocol using a robotic surgery simulator. Female Pelvic Med Reconstr Surg. 2014;20(1):48–51.

    Article  PubMed  Google Scholar 

  3. Oleynikov D. Robotic surgery. Surg Clin North Am. 2008;88:1121–30.

    Article  PubMed  Google Scholar 

  4. Gomez PP, Willis RE, Van Sickle KR. Development of a virtual reality robotic surgical curriculum using the da Vinci Si surgical system. Surg Endosc. 2015;29(8):2171–9.

    Article  PubMed  Google Scholar 

  5. Anderson E, Chang DC, Parsons JK, Talamini MA. The first national examination of outcomes and trends in robotic surgery in the United States. J Am Coll Surg. 2012;215(1):107–14.

    Article  PubMed  Google Scholar 

  6. Connolly M, et al. Validation of a virtual reality-based robotic surgical skills curriculum. Surg Endosc. 2014;28(5):1691–4.

    Article  PubMed  Google Scholar 

  7. Ho C, Tsakonas E, Tran K, et al. Robot-assisted surgery compared with open surgery and laparoscopic surgery: clinical effectiveness and economic analyses. Ottawa: CADTH; 2011.

    Google Scholar 

  8. Tewari A, et al. Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy. Eur Urol. 2012;62:1–15.

    Article  PubMed  Google Scholar 

  9. Murphy DG, Bjartell A, Ficarra V, et al. Downsides of robot-assisted laparoscopic radical prostatectomy: limitations and complications. Eur Urol. 2010;57:735–46.

    Article  PubMed  Google Scholar 

  10. Rajanbabu A, et al. Virtual reality surgical simulators – a prerequisite for robotic surgery. Indian J Surg Oncol. 2014;5(2):125–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bric J, et al. Proficiency training on a virtual reality robotic surgical skills curriculum. Surg Endosc. 2014;28(12):3343–8.

    Article  PubMed  Google Scholar 

  12. Cameron JL. William Stewart Halsted. Our surgical heritage. Ann Surg. 1997;225(5):445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Whittaker G, et al. Validation of the robotiX mentor robotic surgery simulator. J Endourol. 2016;30(3):338–46.

    Article  PubMed  Google Scholar 

  14. Kiely DJ, et al. Virtual reality robotic surgery simulation curriculum to teach robotic suturing: a randomized controlled trial. J Robot Surg. 2015;9(3):179–86.

    Article  PubMed  Google Scholar 

  15. Steinberg PL, Merguerian PA, Bihrle W III, et al. The cost of learning robotic-assisted prostatectomy. Urology. 2008;72:1068–72.

    Article  PubMed  Google Scholar 

  16. Amodeo A, et al. Robotic laparoscopic surgery: cost and training. Minerva Urol Nefrol. 2009;61(2):121–8.

    CAS  PubMed  Google Scholar 

  17. Satava RM, Gallagher AG, Pellegrini CA. Surgical competence and surgical proficiency: definitions, taxonomy, and metrics. J Am Coll Surg. 2003;196:933–7.

    Article  PubMed  Google Scholar 

  18. Jonsson MN, Mahmood M, Askerud T, et al. ProMIS™ can serve as a da Vinci® simulator – a construct validity study. J Endourol. 2011;25(2):345–50.

    Article  PubMed  Google Scholar 

  19. Abboudi H, Khan MS, Aboumarzouk O, et al. Current status of validation for robotic surgery simulators – a systematic review. BJU Int. 2013;111(2):194–205.

    Article  PubMed  Google Scholar 

  20. Lerner MA, Ayalew M, Peine WJ, Sundaram CP. Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system? J Endourol. 2010;24(3):467–72.

    Article  PubMed  Google Scholar 

  21. Bric JD, Lumbard DC, Frelich MJ, Gould JC. Current state of virtual reality simulation in robotic surgery training: a review. Surg Endosc. 2016;30(6):2169–78.

    Article  PubMed  Google Scholar 

  22. Callery MP, Strasberg SM, Soper NJ. Complications of laparoscopic general surgery. Gastrointest Endosc Clin N Am. 2006;6(2):423–44.

    Article  Google Scholar 

  23. Bruynzeel H, de Bruin AF, Bonjer HJ, Lange JF, et al. Desktop simulator: key to universal training? Surg Endosc. 2007;21(9):1637–40.

    Article  PubMed  Google Scholar 

  24. Van Dongen KW, Tournoij E, van der Zee DC, Schijven MP, et al. Construct validity of the LapSim: can the LapSim virtual reality simulator distinguish between novices and experts? Surg Endosc. 2007;21(8):1413–7.

    Article  PubMed  Google Scholar 

  25. Kroeze SGC, Mayer EK, Chopra S, Aggarwal R, et al. Assessment of laparoscopic suturing skills of urology residents: a pan-European study. Eur Urol. 2009;56(5):865–73.

    Article  PubMed  Google Scholar 

  26. Perrenot C, Perez M, Tran N, Jehl JP, et al. The virtual reality simulator dV-Trainer(®) is a valid assessment tool for robotic surgical skills. Surg Endosc. 2012;26(9):2587–93.

    Article  PubMed  Google Scholar 

  27. Ahlberg G, Enochsson L, Gallagher AG, et al. Proficiency- based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg. 2007;193:797–804.

    Article  PubMed  Google Scholar 

  28. Gurusamy K, Aggarwal R, Palanivelu L, et al. Systematic review of randomized controlled trials on the effectiveness of virtual reality training for laparoscopic surgery. Br J Surg. 2008;95:1088–97.

    Article  CAS  PubMed  Google Scholar 

  29. Balasundaram I, Aggarwal R, Darzi A. Short-phase training on a virtual reality simulator improves technical performance in telerobotic surgery. Int J Med Robot. 2008;4:139–45.

    Article  PubMed  Google Scholar 

  30. Seymour NE, Gallagher AG, Roman SA, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236:458–63.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Raza SJ, Froghi S, Chowriappa A, Ahmed K, et al. Construct validation of the key components of fundamental skills of robotic surgery (FSRS) curriculum—a multi-institution prospective study. J Surg Educ. 2014;71:316–24.

    Article  PubMed  Google Scholar 

  32. Chowriappa AJ, Shi Y, Raza SJ, Ahmed K, et al. Development and validation of a composite scoring system for robot-assisted surgical training—the Robotic Skills Assessment Score. J Surg Res. 2013;185:561–9.

    Article  PubMed  Google Scholar 

  33. Kenney P, Wszolek MF, Gould JJ, Libertino J, et al. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73:1288–92.

    Article  PubMed  Google Scholar 

  34. Korets R, Mues AC, Graversen J, Gupta M, et al. Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology. 2011;78:1326–30.

    Article  PubMed  Google Scholar 

  35. Lee JY, Mucksavage P, Kerbl DC, Huynh VB, et al. Validation study of a virtual reality robotic simulator- role as an assessment tool? J Urol. 2012;187:998–1002.

    Article  PubMed  Google Scholar 

  36. Lendvay T, Casale P, Sweet R, Peters C. VR robotic surgery: randomized blinded study of the dV-trainer robotic simulator. Stud Health Technol Inform. 2008;132:242–4.

    PubMed  Google Scholar 

  37. Liss M, Abdelshehid C, Quach S, Lusch A, et al. Validation, correlation, and comparison of the da Vinci trainer and the daVinci surgical skills simulator using the Mimic software for urologic robotic surgical education. J Endourol. 2012;26:1629–34.

    Article  PubMed  Google Scholar 

  38. Alzahrani T, Haddad R, Alkhayal A, Delisle J, et al. Validation of the da Vinci surgical skill simulator across three surgical disciplines: a pilot study. Can Urol Assoc. 2013;7(7–8):E520–9.

    Article  Google Scholar 

  39. Finnegan KT, Meraney AM, Staff I, Shichman SJ. da Vinci skills simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance. Urology. 2012;80:330–5.

    Article  PubMed  Google Scholar 

  40. Hung AJ, Jayaratna IS, Teruya K, Desai MM, et al. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 2013;112(6):864–71.

    Article  PubMed  Google Scholar 

  41. Hung AJ, Zehnder P, Patil MB, Cai J, et al. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186:1019–25.

    Article  PubMed  Google Scholar 

  42. Kelly DC, Margules AC, Kundavaram CR, Narins H, et al. Face, content, and construct validation of the da Vinci skills simulator. Urology. 2012;79:1068–72.

    Article  PubMed  Google Scholar 

  43. Lyons C, Goldfarb D, Jones SL, Badhiwala N, et al. Which skills really matter? Proving face, content, and construct validity for a commercial robotic simulator. Surg Endosc. 2013;27:2020–30.

    Article  PubMed  Google Scholar 

  44. Culligan P, Gurshumov E, Lewis C, Priestley J, et al. Predictive validity of a training protocol using a robotic surgery simulator. Female Pelvic Med Reconstr Surg. 2014;20:48–51.

    Article  PubMed  Google Scholar 

  45. Gavazzi A, Bahsoun AN, Van Haute W, Ahmed K, et al. Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP robot). Ann R Coll Surg Engl. 2011;93:152–6.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shamim Khan M, Ahmed K, Gavazzi A, et al. Development and implementation of centralized simulation training: evaluation of feasibility, acceptability and construct validity. BJU Int. 2013;111:518–23.

    Article  PubMed  Google Scholar 

  47. Hung AJ, Patil MB, Zehnder P, Cai J, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. 2012;187:630–7.

    Article  PubMed  Google Scholar 

  48. Tanaka A, Graddy C, Simpson K, Perez M, Truong M, Smith R. Robotic surgery simulation validity and usability comparative analysis. Surg Endosc. 2016;30(9):3720–9.

    Article  PubMed  Google Scholar 

  49. Vaccaro CM, Crisp CC, Fellner AN, Jackson C, et al. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial. Female Pelvic Med Reconstr Surg. 2013;19(5):266–70.

    Article  PubMed  Google Scholar 

  50. Yates D, Vaessen C, Roupret M. From Leonardo to da Vinci: the history of robot-assisted surgery in urology. BJU Int. 2011;108:1708–14.

    Article  PubMed  Google Scholar 

  51. Pellen MG, Horgan LF, Barton JR, Attwood SE. Construct validity of the ProMIS laparoscopic simulator. Surg Endosc. 2009;23:130–9.

    Article  PubMed  Google Scholar 

  52. Neary PC, Boyle E, Delaney CP, Senagore AJ, et al. Construct validation of a novel hybrid virtual-reality simulator for training and assessing laparoscopic colectomy; results from the first course for experienced senior laparoscopic surgeons. Surg Endosc. 2008;22:2301–9.

    Article  PubMed  Google Scholar 

  53. Feifer A, Al-Ammari A, Kovac E, Delisle J, et al. Randomized controlled trial of virtual reality and hybrid simulation for robotic surgical training. BJU Int. 2011;108:1652–6.

    Article  PubMed  Google Scholar 

  54. McDougall EM. Validation of surgical simulators. J Endourol. 2007;21(3):244–7.

    Article  PubMed  Google Scholar 

  55. Foell K, Furse A, Honey RJ, Pace KT, et al. Multidisciplinary validation study of the da Vinci Skills Simulator: educational tool and assessment device. J Robot Surg. 2013;7(4):365–9.

    Article  PubMed  Google Scholar 

  56. Korets R, Graversen JA, Mues A, Gupta M, et al. Face and construct validity assessment of 2nd generation robotic surgery simulator. J Urol. 2011;185(Suppl):e488.

    Google Scholar 

  57. Korets R, Mues AC, Graversen J, Gupta M, et al. Comparison of robotic surgery skill acquisition between DV-Trainer and da Vinci surgical system: a randomized controlled study. J Urol. 2011;185(Suppl):e593.

    Google Scholar 

  58. Sedlack RE, Kolars JC. Computer simulator training enhances the competency of gastroenterology fellows at colonoscopy: results of a pilot study. Am J Gastroenterol. 2004;99:33–7.

    Article  PubMed  Google Scholar 

  59. Wass V, Van der Vleuten C, Shatzer J, Jones R. Assessment of clinical competence. Lancet. 2001;357:945–9.

    Article  CAS  PubMed  Google Scholar 

  60. Colaco M, Balica A, Su D, Barone J. Initial experiences with RoSS surgical simulator in residency training: a validity and model analysis. J Robot Surg. 2013;7(1):71–5.

    Article  PubMed  Google Scholar 

  61. Seixas-Mikelus SA, et al. Face validation of a novel robotic surgical simulator. Urology. 2010;76:357–60.

    Article  PubMed  Google Scholar 

  62. Sethi AS, Peine WJ, Mohammadi Y, et al. Validation of a novel virtual reality robotic simulator. J Endourol. 2009;23:503–8.

    Article  PubMed  Google Scholar 

  63. Kesavadas T, et al. Validation of robotic surgery simulator (RoSS). Stud Health Technol Inform. 2011;163:274–6.

    PubMed  Google Scholar 

  64. Smith R, Patel V, Satava R. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot. 2014;10(3):379–84.

    Article  PubMed  Google Scholar 

  65. Rogula T, Acquafresca PA, Bazan M. Training and credentialing in robotic surgery. In: Essentials of robotic surgery. Cham: Springer International Publishing; 2015.

    Google Scholar 

  66. Himpens J, Leman G, Cadière GB. Telesurgical laparoscopic cholecystectomy. Surg Endosc. 1998;12:81091.

    Article  Google Scholar 

  67. Cadiere GB, Himpens J, Vertruyen M, et al. The world’s first obesity surgery performed by a surgeon at a distance. Obes Surg. 1999;2:206–9.

    Article  Google Scholar 

  68. Horgan S, Vanuno D. Robots in laparoscopic surgery. J Laparoendosc Adv Surg Tech A. 2001;11(6):415–9. https://doi.org/10.1089/10926420152761950.

    Article  CAS  PubMed  Google Scholar 

  69. Sudan R, Puri V, Sudan D. Robotically assisted biliary pancreatic diversion with a duodenal switch: a new technique. Surg Endosc. 2007;21:729–33.

    Article  CAS  PubMed  Google Scholar 

  70. Ayloo S, Buchs NC, Addeo P, Bianco FM, Giulianotti PC. Robot-assisted sleeve gastrectomy for super-morbidly obese patients. J Laparoendosc Adv Surg Tech A. 2011;21:295–9.

    Article  PubMed  Google Scholar 

  71. Perrenot C, Perez M, Tran N, et al. The virtual reality simulator dV-Treiner® is a valid assessment tool for robotic surgical skills. Surg Endosc. 2012;26(9):2587–93.

    Article  PubMed  Google Scholar 

  72. Wilson EB, Sudan R. The evolution of robotic bariatric surgery. World J Surg. 2013;37:2756–60.

    Article  PubMed  Google Scholar 

  73. Parikh MS, Shen R, Weiner M, Siegel N, Ren CJ. Laparoscopic bariatric surgery in super-obese patients (BMI>50) is safe and effective: a review of 332 patients. Obes Surg. 2005;15:858–63.

    Article  PubMed  Google Scholar 

  74. Gagner M, Gumbs AA, Milone L, Yung E, Goldenberg L, Pomp A. Laparoscopic sleeve gastrectomy for the super-super-obese (body mass index >60 kg/m(2)). Surg Today. 2008;38:399–403.

    Article  PubMed  Google Scholar 

  75. Ramos AC, Domene CE, Volpi P, Pajeki D, D’Almeida LAV, Ramos MG, Bastos ELS, Kim KC. Early outcomes of the first Brazilian experience in totally robotic bariatric surgery. Arq Bras Cir Dig. 2013;26(Supplement 1):2–7.

    Article  PubMed  Google Scholar 

  76. Fantola G, Perrenot C, Germain A, Ayav A, et al. Simulator practice is not enough to become a robotic surgeon: the driving lessons model. J Laparoendosc Adv Surg Tech A. 2014;24(4):260.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

d’Almeida, L.A.V., Freitas, D.G.C. (2019). Overview on Robotic Training. In: Domene, C., Kim, K., Vilallonga Puy, R., Volpe, P. (eds) Bariatric Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-17223-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17223-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17222-0

  • Online ISBN: 978-3-030-17223-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics