Skip to main content

The da Vinci Surgical System

  • Chapter
  • First Online:

Abstract

The da Vinci Surgical System is intimately associated with the concept of robotic-assisted laparoscopic surgery. Its development, which started 25 years ago for military and astronautic purposes, has followed and answered the main challenges of laparoscopic telemanipulation. The innovative enhancement of surgeons’ dexterity, visual capacities, and ergonomics has established the da Vinci system as the gold standard and, until recently, only laparoscopic robotic system. Simulation, virtual mentoring, advanced instrumentation, and enhanced reality are few of the multiple technological adjuncts to the system over the years. Many controversies have been raised, mostly regarding costs and operative time, which are still subject to debate. With the constant improvement of the da Vinci system and the venue of new competitors on the market, robotic laparoscopic surgery will undoubtedly transform the surgical practice at a larger scale in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NASDAQ_ISRG_2018.pdf [Internet]. [cited 2019 May 07]. Available from: http://www.annualreports.com/HostedData/AnnualReports/PDF/NASDAQ_ISRG_2018.pdf

  2. Ballantyne GH. Robotic surgery, telerobotic surgery, telepresence, and telementoring. Review of early clinical results. Surg Endosc. 2002;16(10):1389–402.

    Article  CAS  Google Scholar 

  3. Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487–92.

    Article  Google Scholar 

  4. Faust RA. Robotics in surgery: history, current and future applications, vol. 336. New York: Nova Publishers; 2007.

    Google Scholar 

  5. Intuitive Surgical – Company history [Internet]. [cited 2017 May 29]. Available from: https://www.intuitive.com/en-us/about-us/company

  6. Himpens J, Leman G, Cadiere GB. Telesurgical laparoscopic cholecystectomy. Surg Endosc. 1998;12(8):1091.

    Article  CAS  Google Scholar 

  7. Sung GT, Gill IS. Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems. Urology. 2001;58(6):893–8.

    Article  CAS  Google Scholar 

  8. Yates DR, Vaessen C, Roupret M. From Leonardo to da Vinci: the history of robot-assisted surgery in urology. BJU Int. 2011;108(11):1708–13.

    Article  Google Scholar 

  9. Hagen ME, Stein H, Curet MJ. Introduction to the robotic system. In: Kim KC, editor. Robotics in general surgery [Internet]. New York: Springer New York; 2014. p. 9–15. Available from: https://doi.org/10.1007/978-1-4614-8739-5_2

    Google Scholar 

  10. Intuitive Surgical – da Vinci Surgical Systems [Internet]. [cited 2019 May 07]. Available from: https://www.intuitive.com/en-us/products-and-services/da-vinci/systems

  11. Wilson TG. Advancement of technology and its impact on urologists: release of the daVinci Xi, a new surgical robot. Eur Urol. 2014;66(5):793–4.

    Article  Google Scholar 

  12. Freschi C, Ferrari V, Melfi F, Ferrari M, Mosca F, Cuschieri A. Technical review of the da Vinci surgical telemanipulator: technical review of the da Vinci surgical telemanipulator. Int J Med Robot. 2013;9(4):396–406.

    Article  CAS  Google Scholar 

  13. Kwartowitz DM, Herrell SD, Galloway RL. Toward image-guided robotic surgery: determining intrinsic accuracy of the da Vinci robot. Int J Comput Assist Radiol Surg. 2006;1(3):157–65.

    Article  Google Scholar 

  14. Moorthy K, Munz Y, Dosis A, Hernandez J, Martin S, Bello F, et al. Dexterity enhancement with robotic surgery. Surg Endosc [Internet]. 2004 May [cited 2017 May 19];18(5). Available from: http://link.springer.com/10.1007/s00464-003-8922-2

  15. Mucksavage P, Kerbl DC, Lee JY. The da Vinci ® surgical system overcomes innate hand dominance. J Endourol. 2011;25(8):1385–8.

    Article  Google Scholar 

  16. 2000-07-Mintz-Falk-Salisbury-Visualization-telesurg-performance.pdf [Internet]. [cited 2019 May 07]. Available from: http://ai.stanford.edu/~jks/pubs/2000-07-Mintz-Falk-Salisbury-Visualization-telesurg-performance.pdf

  17. Byrn JC, Schluender S, Divino CM, Conrad J, Gurland B, Shlasko E, et al. Three-dimensional imaging improves surgical performance for both novice and experienced operators using the da Vinci Robot System. Am J Surg. 2007;193(4):519–22.

    Article  Google Scholar 

  18. Hellan M, Spinoglio G, Pigazzi A, Lagares-Garcia JA. The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc. 2014;28(5):1695–702.

    Article  Google Scholar 

  19. Leven J, Burschka D, Kumar R, Zhang G, Blumenkranz S, Dai X (Donald), et al. DaVinci Canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability. In: Duncan JS, Gerig G, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005 [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005 [cited 2017 May 19]. p. 811–8. Available from: http://link.springer.com/10.1007/11566465_100

  20. Ukimura O, Aron M, Nakamoto M, Shoji S, Abreu AL de C, Matsugasumi T, et al. Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy. J Endourol. 2014;28(6):625–30.

    Article  Google Scholar 

  21. Uhrich ML, Underwood RA, Standeven JW, Soper NJ, Engsberg JR. Assessment of fatigue, monitor placement, and surgical experience during simulated laparoscopic surgery. Surg Endosc. 2002;16(4):635–9.

    Article  CAS  Google Scholar 

  22. Lawson EH, Curet MJ, Sanchez BR, Schuster R, Berguer R. Postural ergonomics during robotic and laparoscopic gastric bypass surgery: a pilot project. J Robot Surg. 2007;1(1):61–7.

    Article  Google Scholar 

  23. Morelli L, Palmeri M, Guadagni S, Di Franco G, Moglia A, Ferrari V, et al. Use of a new integrated table motion for the da Vinci Xi in colorectal surgery. Int J Color Dis. 2016;31(9):1671–3.

    Article  Google Scholar 

  24. Smith AL, Scott EM, Krivak TC, Olawaiye AB, Chu T, Richard SD. Dual-console robotic surgery: a new teaching paradigm. J Robot Surg. 2013;7(2):113–8.

    Article  Google Scholar 

  25. Kneebone RL. Practice, rehearsal, and performance: an approach for simulation-based surgical and procedure training. JAMA. 2009;302(12):1336.

    Article  CAS  Google Scholar 

  26. Stegemann AP, Ahmed K, Syed JR, Rehman S, Ghani K, Autorino R, et al. Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology. 2013;81(4):767–74.

    Article  Google Scholar 

  27. Smith R, Truong M, Perez M. Comparative analysis of the functionality of simulators of the da Vinci surgical robot. Surg Endosc. 2015;29(4):972–83.

    Article  Google Scholar 

  28. Food and Drug Administration (FDA). 510 k act, da Vinci® SpTM Surgical System. K131962 [Internet]. [cited 2019 May 07]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf13/K131962.pdf

  29. ANZCTR – Trial registration – First human use of an investigational bronchoscope system [Internet]. [cited 2019 May 07]. Available from: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=371300&isReview=true

  30. Hagen ME, Pugin F, Chassot G, Huber O, Buchs N, Iranmanesh P, et al. Reducing cost of surgery by avoiding complications: the model of robotic Roux-en-Y gastric bypass. Obes Surg. 2012;22(1):52–61.

    Article  Google Scholar 

  31. Hagen ME, Jung MK, Fakhro J, Buchs NC, Buehler L, Mendoza JM, et al. Robotic versus laparoscopic stapling during robotic Roux-en-Y gastric bypass surgery: a case-matched analysis of costs and clinical outcomes. Surg Endosc. 2017;32(1):472–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Douissard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Douissard, J., Hagen, M.E., Morel, P. (2019). The da Vinci Surgical System. In: Domene, C., Kim, K., Vilallonga Puy, R., Volpe, P. (eds) Bariatric Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-17223-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17223-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17222-0

  • Online ISBN: 978-3-030-17223-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics