Skip to main content

Uranium Particulate Analysis

  • Chapter
  • First Online:
The 2011 Fukushima Daiichi Nuclear Power Plant Accident

Part of the book series: Springer Theses ((Springer Theses))

  • 457 Accesses

Abstract

As shown previously in Chap. 7, U-containing material (alongside material of a wide range of other compositions) has been observed to exist distributed across the majority of Fukushima Prefecture. This U-rich atmospheric particulate was shown to be some of the smallest to exist (with a mean diameter of 1.07 µm), while containing the fewest additional elemental constituents (i.e. predominantly composed of just U and O).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IAEA (2016) IAEA power reactor information system (PRIS)

    Google Scholar 

  2. World Nuclear Association (2017) World nuclear power reactors & uranium requirements

    Google Scholar 

  3. Emsley J (2003) Nature’s building blocks: an A-Z guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  4. Mindat.org, Mineralogy database–mineral collecting, localities, mineral photos and data (2017)

    Google Scholar 

  5. Deer W, Howie R, Zussman J (2013) An introduction to the rock-forming minerals. Mineralog Soc Great Britain Ireland 1

    Google Scholar 

  6. Bleise A, Danesi P, Burkart W (2003) Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64(1):93–112

    Google Scholar 

  7. Runde W (2000) The chemical interactions of actinides in the environment. Los Alamos Sci 26:392–411

    Google Scholar 

  8. Timbrell J (1999) Principles of biochemical toxicology, vol 1, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  9. Hamilton EI (2001) Depleted uranium (DU): a holistic consideration of DU and related matters. Sci Total Environ 281:5

    Google Scholar 

  10. Kleindiek S (1995) Miniature three-axis micropositioner for scanning proximal probe and other applications. J Vacuum Sci Technol B Microelectron Nanometer Struct 13:2653

    Google Scholar 

  11. Kleindiek Nanotechnik GmbH, MM3A-EM micromanipulator product brochure. Technical report. Reutlingen, Germany

    Google Scholar 

  12. Kleindiek S, Rummel A, Schock K (2008) E-beam hardening SEM glue for fixation of small objects in the SEM

    Google Scholar 

  13. Kleindiek Nanotechnik GmbH, SEMGlu product brochure

    Google Scholar 

  14. Martin PG, Griffiths I, Jones CP, Stitt CA, Davies-Milner M, Mosselmans JF, Yamashiki Y, Richards DA, Scott TB (2016) In-situ removal and characterisation of uranium-containing particles from sediments surrounding the Fukushima Daiichi Nuclear Power Plant. Spectrochimica Acta Part B Atomic Spectr 117:1–7

    Google Scholar 

  15. Jiao C (2006) FIB and dualBeam theory and applications. Technical report, FEI Company, Oregon, USA

    Google Scholar 

  16. MEXT and US Department of Energy (2011) Results of the airborne monitoring by the Ministry of Education, Culture, Sports, Science and Technology and the U.S. Department of Energy. 6th May 2011. Technical report

    Google Scholar 

  17. Diamond Light Source Ltd. (2017) How diamond works - diamond light source

    Google Scholar 

  18. Solé V, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta Part B Atomic Spectr 62:63–68

    Google Scholar 

  19. Ravel B, Newville MA (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrot Radiat 12:537–541

    Google Scholar 

  20. Rehr JJ, Albers RC, Zabinsky SI (1992) High-order multiple-scattering calculations of x-ray-absorption fine structure. Phys Rev Lett 69:3397–3400

    Google Scholar 

  21. Newville M (2001) IFEFFIT : interactive XAFS analysis and FEFF fitting. J Synchrot Radiat 8:322–324

    Google Scholar 

  22. International X-ray Absorption Society (2017) XAFS materials database

    Google Scholar 

  23. Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JH, Joy DC (1992) Scanning electron microscopy and x-ray microanalysis: a text for biologists, materials scientists, and geologists, 2nd edn. Plenum Press, New York

    Google Scholar 

  24. Newville M (2004) Fundamentals of XAFS. Revision 1 edn

    Google Scholar 

  25. Sehmel GA (1980) Particle resuspension: a review. Environ Int 4:107–127

    Google Scholar 

  26. Press CRC (2015) CRC handbook of chemistry and physics - table of isotopes, 96th edn. Boca Raton, Florida

    Google Scholar 

  27. De Bièvre P, Taylor PDP (1993) Table of the isotopic compositions of the elements. Int J Mass Spectr Ion Process 123:149–166

    Google Scholar 

  28. Glasstone S (1950) The effects of nuclear weapons. Technical report, Office of Scientific and Technical Information, Oak Ridge

    Google Scholar 

  29. Wilson PD (1996) The nuclear fuel cycle : from ore to wastes. Oxford University Press, Oxford

    Google Scholar 

  30. Burns PC, Ewing RC, Navrotsky A (2012) Nuclear fuel in a reactor accident. Science 335:1184–1188

    Google Scholar 

  31. Buck EC, Hanson BD, McNamara BK (2004) The geochemical behaviour of Tc, Np and Pu in spent nuclear fuel in an oxidizing environment. Geol Soc London Special Publ 236:65–88

    Google Scholar 

  32. Konings RJM, Wiss T, Beneš O (2015) Predicting material release during a nuclear reactor accident. Nat Mater 14:247–252

    Google Scholar 

  33. Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48(7):1129–1134

    Article  Google Scholar 

  34. Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817

    Google Scholar 

  35. Sawhney BL (1972) Selective sorption and fixation of cations by clay minerals: a review. Clays Clay Minerals 20:93–100

    Article  ADS  Google Scholar 

  36. Mukai H, Hatta T, Kitazawa H, Yamada H, Yaita T, Kogure T (2014) Speciation of radioactive soil particles in the Fukushima contaminated area by IP autoradiography and microanalyses. Environ Sci Technol 48:13053–13059

    Google Scholar 

  37. OECD (2009) Nuclear fuel behaviour in loss-of-coolant accident (LOCA) conditions. Technical report

    Google Scholar 

  38. Foreman MRSJ (2015) An introduction to serious nuclear accident chemistry. Cogent Chem 6

    Google Scholar 

  39. Abe Y, Iizawa Y, Terada Y, Adachi K, Igarashi Y, Nakai I (2014) Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal Chem 86:8521–8525

    Google Scholar 

  40. Yamaguchi N, Mitome M, Kotone AH, Asano M, Adachi K, Kogure T (2016) Internal structure of cesium-bearing radioactive microparticles released from Fukushima nuclear power plant. Sci Rep 6:6

    Google Scholar 

  41. Kogure T, Yamaguchi N, Segawa H, Mukai H, Motai S, Akiyama-Hasegawa K, Mitome M, Hara T, Yaita T (2016)Constituent elements and their distribution in the radioactive Cs-bearing silicate glass microparticles released from Fukushima nuclear plant. Microscopy 65:451–459

    Google Scholar 

  42. Yamamoto M, Sakaguchi A, Ochiai S, Takada T, Hamataka K, Murakami T, Nagao S (2014) Isotopic Pu, Am and Cm signatures in environmental samples contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 132:31–46

    Google Scholar 

  43. Nishizawa Y, Yoshida M, Sanada Y, Torii T (2015) Distribution of the 134 Cs/ 137 Cs ratio around the Fukushima Daiichi nuclear power plant using an unmanned helicopter radiation monitoring system. J Nucl Sci Technol 53:1–7

    Google Scholar 

  44. Chino M, Terada H, Nagai H, Katata G, Mikami S, Torii T, Saito K, Nishizawa Y (2016) Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident. Sci Rep 6:146

    Google Scholar 

  45. World Nuclear Association (2017) The Fukushima Daiichi accident

    Google Scholar 

  46. TEPCO (2012) Fukushima nuclear accident analysis report 2012. Technical report, Tokyo

    Google Scholar 

  47. IAEA (2015) Technical volume 1 of 5: description and context of the accident. In: The Fukushima Daiichi accident. IAEA, Vienna, Austria, p 238

    Google Scholar 

  48. TEPCO (2011) Measurement data at Fukushima Daiichi nuclear power station (in Japanese)

    Google Scholar 

  49. Schneider S, Bister S, Christl M, Hori M, Shozugawa K, Synal HA, Steinhauser G, Walther C (2017) Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 2: forensic search for the Forgotten contaminants Uranium-236 and plutonium. Appl Geochem 85(B):94–200

    Google Scholar 

  50. Shinonaga T, Steier P, Lagos M, Ohkura T (2014) Airborne plutonium and non-natural uranium from the fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions. Environ Sci Technol 48:3808–3814

    Google Scholar 

  51. Steinhauser G (2014) Fukushima’s forgotten radionuclides: a review of the understudied radioactive emissions. Environ Sci Technol 48:4649–4663

    Google Scholar 

  52. Shozugawa K, Nogawa N, Matsuo M (2012) Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident. Environ Pollut 163(4):243–247 (2012)

    Google Scholar 

  53. Nishihara K, Iwamoto H, Suyama K (2012) Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant. In: JAEA 2012-018

    Google Scholar 

  54. Endo T, Sato S, Yamamoto A (2012) Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the 134Cs/137Cs ratio method. In: Harara H, Yokoyama K, Iwamoto N, Nakamura S, Koura H (eds) Symposium on nuclear data; November 16–17, 2011, Ricotti, Tokai, Japan, (Tokai). IAEA, pp 45–51

    Google Scholar 

  55. Nuclear Emergency Response Headquarters (Government of Japan) (2011) Report of Japanese Government to the IAEA Ministerial conference on nuclear safety - The Accident at TEPCO’s Fukushima Nuclear Power Stations. Technical report, Toyko

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter George Martin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin, P.G. (2019). Uranium Particulate Analysis. In: The 2011 Fukushima Daiichi Nuclear Power Plant Accident. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-17191-9_8

Download citation

Publish with us

Policies and ethics