Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 455 Accesses

Abstract

Nuclear reactor cores contain a range of materials with contrasting compositions and properties, each serving to perform specific functions, including; (i) structural and shielding materials, (ii) boilers and heat exchangers and, (iii) the physical (fissile) fuel and the associated control rod material [1,2,3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zinkle S, Was G (2013) Materials challenges in nuclear energy. Acta Mater 61(2):735–758

    Article  Google Scholar 

  2. Crouch E (1977) Fission-product yields from neutron-induced fission. AtIc Data Nucl Data Tables 19(5):417–532

    Google Scholar 

  3. Bruno J, Ewing RC (2006) Spent nuclear fuel. Elements 2(12):343–349

    Google Scholar 

  4. Kanai Y (2012) Monitoring of aerosols in Tsukuba after Fukushima nuclear power plant incident in 2011. J Environ Radioact 111(9):33–37

    Google Scholar 

  5. Malá H, Rulík P, Bečková V, Mihalík J, Slezáková M (2013) Particle size distribution of radioactive aerosols after the Fukushima and the Chernobyl accidents. J Environ Radioact 126(12):92–98

    Article  Google Scholar 

  6. Masson O, Ringer W, Malá H, Rulik P, Dlugosz-Lisiecka M, Eleftheriadis K, Meisenberg O, De Vismes-Ott A, Gensdarmes F (2013) Size distributions of airborne radionuclides from the Fukushima nuclear accident at several places in Europe. Environ Sci Technol 47(10):10995–11003

    Article  ADS  Google Scholar 

  7. Steinhauser G (2014) Fukushima’s forgotten radionuclides: a review of the understudied radioactive emissions. Environ Sci Technol 48(5):4649–4663

    Article  ADS  Google Scholar 

  8. World Health Organization (2016) Ten chemicals of major public health concern. Technical report

    Google Scholar 

  9. Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(3):1132

    Article  Google Scholar 

  10. Yoshida S, Muramatsu Y, Tagami K, Uchida S (1996) Determination of major and trace elements in japanese rock reference samples by ICP-MS. Int J Environ Anal Chem 63(7):195–206

    Article  Google Scholar 

  11. Yamasaki S-I, Takeda A, Nanzyo M, Taniyama I, Nakai M (2001) Background levels of trace and ultra-trace elements in soils of Japan. Soil Sci Plant Nutr 47(12):755–765

    Article  Google Scholar 

  12. Shimamura T, Iwashita M, Iijima S, Shintani M, Takaku Y (2007) Major to ultra trace elements in rainfall collected in suburban Tokyo. Atmos Environ 41(33):6999–7010

    Article  ADS  Google Scholar 

  13. Iwashita M, Saito A, Arai M, Furusho Y, Shimamura T (2011) Determination of rare earth elements in rainwater collected in suburban Tokyo. Geochem J 45(3):187–197

    Article  Google Scholar 

  14. Furuta N, Iijima A, Kambe A, Sakai K, Sato K (2005) Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004. J Environ Monit 7(12):1155–1161

    Article  Google Scholar 

  15. Suzuki Y, Suzuki T, Furuta N (2010) Determination of rare earth elements (REES) in airborne particulate matter (APM) collected in Tokyo, Japan, and a positive anomaly of europium and terbium. Anal Sci: Int J Jpn Soc Anal Chem 26(9):929–935

    Article  Google Scholar 

  16. Sakai S, Sawell SE, Chandler AJ, Eighmy TT, Kosson DS, Vehlow J, Van Der Sloot HA, Hartlén J, Hjelmar O (1996) World trends in municipal solid waste management (1)

    Google Scholar 

  17. Japanese Ministry of the Environment (2014) History and current state of waste management in Japan. Technical report, Tokyo

    Google Scholar 

  18. Tanaka M (1992) Reduction of and resource recovery from municipal solid waste in Japan. Waste Manag Res 10(10):453–459

    Article  Google Scholar 

  19. Ramanathan V, Crutzen P, Kiehl J, Rosenfeld D (2001) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 249(12):2119–2124

    Article  ADS  Google Scholar 

  20. Sakaguchi A, Steier P, Takahashi Y, Yamamoto M (2014) Isotopic compositions of (236)U and Pu isotopes in “black substances” collected from roadsides in Fukushima prefecture: fallout from the Fukushima Dai-ichi nuclear power plant accident. Environ Sci Technol 48(4):3691–3697

    Article  ADS  Google Scholar 

  21. Carl Zeiss NTS - Nano technology system division (2014) Zeiss sigma HD product manual, Technical report, Carl Zeiss Limited, Cambridge

    Google Scholar 

  22. Goldstein JI, Newbury DE, Echlin P, Joy DC, Romig AD, Lyman CF, Fiori C, Lifshin E (1992) Scanning electron microscopy and X-Ray microanalysis: a text for biologists, materials scientists, and geologists, 2nd edn. Plenum Press, New York

    Google Scholar 

  23. NRA (2015) Results of the ninth airborne monitoring and airborne monitoring out of the 80 km zone of Fukushima Dai-ichi NPP. Technical report, NRA

    Google Scholar 

  24. WebMineral (2017) Minerals by chemical composition

    Google Scholar 

  25. Sehmel GA (1980) Particle resuspension: a review. Environ Int 4(1):107–127

    Article  Google Scholar 

  26. Press CRC (2015) CRC handbook of chemistry and physics - summary properties of the elements, 96th edn. Boca Raton, Florida

    Google Scholar 

  27. Shozugawa K, Nogawa N, Matsuo M (2012) Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident. Environ Pollut 163(4):243–247

    Article  Google Scholar 

  28. Le Petit G, Douysset G, Ducros G, Gross P, Achim P, Monfort M, Raymond P, Pontillon Y, Jutier C, Blanchard X, Taffary T, Moulin C (2012) Analysis of radionuclide releases from the Fukushima Dai-Ichi nuclear power plant accident part I. Pure Appl Geophys 171(9):629–644

    Google Scholar 

  29. IAEA (2017) Cumulative fission yields

    Google Scholar 

  30. Emsley J (2003) Nature’s building blocks : an A-Z guide to the elements. Oxford University Press

    Google Scholar 

  31. British Geological Survey (2011) Rare earth elements. Technical report, British Geological Survey, Nottingham

    Google Scholar 

  32. Charalampides G, Vatalis KI, Apostoplos B, Ploutarch-Nikolas B (2015) Rare earth elements: industrial applications and economic dependency of Europe. Procedia Econ Financ 24(15):126–135

    Article  Google Scholar 

  33. R. Rudnick, S. Gao (2003) Composition of the continental crust, in Treatise on geochemistry, vol 3, Elsevier, pp 1–64

    Google Scholar 

  34. Kikawada Y, Oda K, Yamauchi R, Nomura M, Honda T, Oi T, Hirose K, Igarashi Y (2009) Anomalous uranium isotope ratio in atmospheric deposits in Japan. J Nucl Sci Technol 46(12):1094–1098

    Article  Google Scholar 

  35. Kikawada Y, Oda K, Nomura M, Honda T, Oi T (2012) Origin of enriched uranium contained in Japanese atmospheric deposits. Nat Sci 4(11):936–942

    Google Scholar 

  36. Yoshida S, Muramatsu Y, Tagami K, Uchida S (1998) Concentrations of lanthanide elements, Th, and U in 77 Japanese surface soils. Environ Int 24(4):275–286

    Article  Google Scholar 

  37. Hirose K, Sugimura Y (1981) Concentration of uranium and the activity ratio of 234U/238U in surface air: effect of atmospheric burn-up of Cosmos-954. Pap Meteorol Geophys 32(3):317–322

    Article  Google Scholar 

  38. Aoyama M, Hirose K, Sugimura Y (1987) Deposition of gamma-emitting nuclides in Japan after the reactor-IV accident at Chernobyl. J Radioanal Nucl Chem Artic 116(12):291–306

    Article  Google Scholar 

  39. Hirose K, Sugimura Y (1990) Plutonium isotopes in the surface air in Japan: effect of chernobyl accident. J Radioanal Nucl Chem Artic 138(1):127–138

    Article  Google Scholar 

  40. Yoshida S, Muramatsu Y, Tagami K, Uchida S, Ban-nai T, Yonehara H, Sahoo S (2000) Concentrations of uranium and ratios in soil and plant samples collected around the uranium conversion building in the JCO campus. J Environ Radioact 50(8):161–172

    Article  Google Scholar 

  41. Nicholson KW (1988) A review of particle resuspension. Atmos Environ 22(1):2639–2651

    Article  ADS  Google Scholar 

  42. Nicholson KW, Branson JR, Giess P, Cannell RJ (1989) The effects of vehicle activity on particle resuspension. J Aerosol Sci 20(1):1425–1428

    Article  ADS  Google Scholar 

  43. Geological Survey of Japan (2015) Geological survey of Japan (GSJ), AIST

    Google Scholar 

  44. Kabata-Pendias A (2000) Trace elements in soils and plants, 3rd edn. CRC Press

    Google Scholar 

  45. Hunsicker MD, Crockett TR, Labode BMA (1996) An overview of the municipal waste incineration industry in Asia and the former Soviet Union. J Hazard Mater 47(5):31–42

    Article  Google Scholar 

  46. Fermo P, Cariati F, Pozzi A, Demartin F, Tettamanti M, Collina E, Lasagni M, Pitea D, Puglisi O, Russo U (1999) The analytical characterization of municipal solid waste incinerator fly ash: methods and preliminary results. Fresenius J Anal Chem 365(12):666–673

    Article  Google Scholar 

  47. Davison RL, Natusch DFS, Wallace JR, Evans CA (1974) Trace elements in fly ash. Dependence of concentration on particle size. Environ Sci Technol 8(12):1107–1113

    Article  ADS  Google Scholar 

  48. Campbell JA, Laul JC, Nielson KK, Smith RD (1978) Separation and chemical characterization of finely-sized fly-ash particles (7)

    Google Scholar 

  49. Block C, Dams R (1976) Study of fly ash emission during combustion. Environ Sci Technol 10(10):1011–1017

    Article  ADS  Google Scholar 

  50. World Nuclear Association (2017) Nuclear power in Japan

    Google Scholar 

  51. Ault AP, Peters TM, Sawvel EJ, Casuccio GS, Willis RD, Norris GA, Grassian VH (2012) Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio. Environ Sci Technol 46(5):4331–4339

    Article  ADS  Google Scholar 

  52. Geospatial Information Authority of Japan (2017) Maps and geospatial information

    Google Scholar 

  53. Wu J, Hu X, Ma J, Zhang C, Mojia S (2017) Analysis of ground deposition of radionuclides under different wind fields from the Fukushima Daiichi accident. Nat Hazards 2:1–12

    Google Scholar 

  54. Christoudias T, Lelieveld J (2013) Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmos Chem Phys 13(2):1425–1438

    Article  ADS  Google Scholar 

  55. Centers for Disease Control and Prevention (2018) NIOSH publications and products

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter George Martin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin, P.G. (2019). Particulate Distribution. In: The 2011 Fukushima Daiichi Nuclear Power Plant Accident. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-17191-9_7

Download citation

Publish with us

Policies and ethics