Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 458 Accesses

Abstract

During the fieldwork component of this study, a number of radiation detection and characterisation methods were utilised. Some of these represented conventional methods employed for routine on-site characterisation, others, however, were developed for, or in response to specific challenges and environments that presented during this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grodstein GW (1957) X-ray attenuation coefficients from 100 keV to 100 MeV, National bureau of standards circular, vol. 583

    Google Scholar 

  2. Hubbell J (1969) Photon cross sections, attenuation coefficients and energy absorption coefficients from 10 keV to 100 GeV

    Google Scholar 

  3. Knoll GF (2010) Radiation detection and measurement. Wiley, New Jersey

    Google Scholar 

  4. Leclair P (2010) Gamma ray attenuation

    Google Scholar 

  5. Minty B (1997) Fundamental of airborne gamma-ray spectrometry

    Google Scholar 

  6. Connor D, Martin PG, Scott TB (2016) Airborne radiation mapping: overview and application of current and future aerial systems. Int J Remote Sens 37(12):5953–5987

    Article  Google Scholar 

  7. Glasstone S, Sesonske A (1994) Nuclear reactor engineering: reactor design basics / reactor systems engineering, 4th edn. Springer, US

    Book  Google Scholar 

  8. Watson PE, Watson ID, Bait RD (1980) Total body water females estimated volumes for adult males and from simple anthropometric measurements. Am J Clin Nutr 33(1):27–39

    Article  Google Scholar 

  9. Jones HE, Cunningham JR (1983) Physics of radiology, 4th edn. Springfield, Thomas Publishing, Illinois, USA

    Google Scholar 

  10. Buchanan E, Cresswell A, Seitz B, Sanderson D (2016) Operator related attenuation effects in radiometric surveys. Radiat Meas 86(3):24–31

    Article  Google Scholar 

  11. Kromek Group PLC (2015) SIGMA spec sheet. Revision 6

    Google Scholar 

  12. Kromek Group PLC (2015) GR1 spec sheet. Revision 10

    Google Scholar 

  13. MacFarlane JW, Payton OD, Keatley AC, Scott GPT, Pullin H, Crane RA, Smilion M, Popescu I, Curlea V, Scott TB (2014) Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies. J Environ Radioact 136(10):127–130

    Article  Google Scholar 

  14. CRC Press (2015) CRC handbook of chemistry and physics - table of isotopes, 96th edn. Boca Raton, Florida

    Google Scholar 

  15. National Physical Laboratory (2013) Intrinsic photopeak detection efficiency as a function of energy: Kromek GR1. Technical report, National Physical Laboratory, Teddington

    Google Scholar 

  16. National Physical Laboratory (2015) Intrinsic photopeak detection efficiency as a function of energy: Kromek SIGMA-50. Technical report, National Physical Laboratory, Teddington

    Google Scholar 

  17. Bell S (2016) A comparison of emerging gamma detector technologies for airborne radiation monitoring. In: ANSRI 2016 Dublin (Dublin, Ireland), p 21

    Google Scholar 

  18. Martin PG, Connor D, Payton OD, Leal-Olloqui M, Keatley AC, Scott TB (2018) Development and validation of a high-resolution mapping platform to aid in the public awareness of radiological hazards. J Radiol Prot 38(1):329–342

    Article  Google Scholar 

  19. Kinase S, Sato S, Sakamoto R, Yamamoto H, Saito K (2015) Changes in ambient dose equivalent rates around roads at Kawamata town after the Fukushima accident. Radiat Prot Dosim 167(11):1–4

    Google Scholar 

  20. Safecast (2016) About safecast

    Google Scholar 

  21. Cresswell AJ, Sanderson DCW, Harrold M, Kirley B, Mitchell C, Weir A (2013) Demonstration of lightweight gamma spectrometry systems in urban environments. J Environ Radioact 124:22–28

    Article  Google Scholar 

  22. Moon CJ (2010) Geochemical exploration in Cornwall and Devon: a review. Geochem: Explor Environ Anal 10(8):331–351

    Google Scholar 

  23. Darnley AG, English T, Sprake O, Preece E, Avery D (1965) Ages of uraninite and coffinite from South-West England. Mineral Mag 34(268):159–176

    Google Scholar 

  24. Dines H (1956) The metalliferous mining region of South-West England. HMSO, London

    Google Scholar 

  25. Beamish D (2014) Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates. J Environ Radioact 138(12):249–263

    Article  Google Scholar 

  26. Public Health England (2011) Guidance: ionising radiation - dose comparision

    Google Scholar 

  27. Moore LR, Trueman AE (1937) The coal measures of Bristol and Somerset. Q J Geol Soc 93(1–4):195–240

    Article  Google Scholar 

  28. The Coal Authority (2017) Coal mining report ground stability report

    Google Scholar 

  29. De La Beche HT (1839) Report on the geology of Cornwall, Devon and West Somerset. Longman, London

    Google Scholar 

  30. Saito K, Onda Y (2015) Outline of the national mapping projects implemented after the Fukushima accident. J Environ Radioact 139(1):240–249

    Article  Google Scholar 

  31. Martin P, Moore J, Fardoulis J, Payton O, Scott T (2016) Radiological assessment on interest areas on the sellafield nuclear site via unmanned aerial vehicle. Remote Sens 913(11):10

    Google Scholar 

  32. Martin P, Payton O, Fardoulis J, Richards D, Scott T (2015) The use of unmanned aerial systems for the mapping of legacy uranium mines. J Environ Radioact 143(5):135–140

    Article  Google Scholar 

  33. Martin P, Griffiths I, Jones C, Stitt C, Davies-Milner M, Mosselmans J, Yamashiki Y, Richards D, Scott T (2016) In-situ removal and characterisation of uranium-containing particles from sediments surrounding the Fukushima Daiichi nuclear power plant. Spectrochim Acta Part B: AtIc Spectrosc 117(3):1–7

    Google Scholar 

  34. Martin P, Payton O, Fardoulis J, Richards D, Yamashiki Y, Scott T (2016) Low altitude unmanned aerial vehicle for characterising remediation effectiveness following the FDNPP accident. J Environ Radioact 151(1):58–63

    Article  Google Scholar 

  35. Martin P, Payton O, Yamashiki Y, Richards D, Scott T (2016) High-resolution radiation mapping to investigate FDNPP derived contaminant migration. J Environ Radioact 164:26–35

    Article  Google Scholar 

  36. AR2500 Acuity, Acuity AR2500 specification

    Google Scholar 

  37. Duval JS, Cook B, Adams JAS (1971) Circle of investigation of an airborne gamma-ray spectrometer. J Geophys Res 76(12):8466–8470

    Article  ADS  Google Scholar 

  38. Pitkin JA, Duval JS (1980) Design parameters for aerial gamma ray surveys. Geophysics 45(9):1427–1439

    Article  ADS  Google Scholar 

  39. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gomez Cadenas JJ, Gonzalez I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampen T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) GEANT4 - A simulation toolkit. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 506:250–303

    Google Scholar 

  40. Malins A, Okumura M, Machida M, Saito K (2015) Topographic effects on ambient dose equivalent rates from radiocesium fallout, p 7, 2 2015

    Google Scholar 

  41. ArduCopter (2018) Mission planner autopilot

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter George Martin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin, P.G. (2019). Field-Based Methods. In: The 2011 Fukushima Daiichi Nuclear Power Plant Accident. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-17191-9_3

Download citation

Publish with us

Policies and ethics