Skip to main content

Response, Contamination and Release Estimates

  • Chapter
  • First Online:
The 2011 Fukushima Daiichi Nuclear Power Plant Accident

Part of the book series: Springer Theses ((Springer Theses))

  • 487 Accesses

Abstract

With the earthquake and subsequent tsunami crippling all but one of the static radiation monitors on the site, there existed little knowledge as to the extent of the numerous radiation releases, detailed formerly in Sect. 1.3. Immediately after the incident, operations were driven to attain data to aid in the establishment of suitable evacuation zones (Sect. 2.2.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Japanese Ministry of the Environment (Government of Japan) (2013) Decontamination guidelines, 2nd edn

    Google Scholar 

  2. MEXT (2011) Extension site of distribution map of radiation dose

    Google Scholar 

  3. Japan Atomic Energy Agency (JAEA) (2017) Database for radioactive substance monitoring data

    Google Scholar 

  4. NRA (2011) Comprehensive radiation monitoring plan. Technical report, Tokyo

    Google Scholar 

  5. Saito K, Onda Y (2015) Outline of the national mapping projects implemented after the Fukushima accident. J Environ Radioact 139(1):240–249

    Article  Google Scholar 

  6. Hubbell J, Seltzer S (2004) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients, 1st edn. National Institute of Standards and Technology, Gaithersburg, MD

    Google Scholar 

  7. Grodstein GW (1957) X-ray attenuation coefficients from 100 keV to 100 MeV, vol 583. National Bureau of Standards Circular, Washington

    Google Scholar 

  8. Sanada Y, Torii T (2015) Aerial radiation monitoring around the Fukushima Dai-ichi nuclear power plant using an unmanned helicopter. J Environ Radioact 139(1):294–249

    Article  Google Scholar 

  9. Furutani T, Uehara K, Tanji K, Usami M, Asano T, A study on micro-scale airborne radiation monitoring by unmanned aerial vehicle for rural area reform contaminated by radiation

    Google Scholar 

  10. Nishizawa Y, Yoshida M, Sanada Y, Torii T (2015) Distribution of the 134 Cs/ 137 Cs ratio around the Fukushima Daiichi nuclear power plant using an unmanned helicopter radiation monitoring system. J Nucl Sci Technol 53(8):1–7

    Google Scholar 

  11. Minty B, Luyendyk A, Brodie R (1997) Calibration and data processing for airborne gamma-ray spectrometry

    Google Scholar 

  12. Pitkin JA, Duval JS (1980) Design parameters for aerial gamma ray surveys. Geophysics 45(9):1427–1439

    Article  ADS  Google Scholar 

  13. Minty B (1997) Fundamental of airborne gamma-ray spectrometry

    Google Scholar 

  14. Sanderson D, Allyson J, Tyler A, Scott E (1995) Environmental applications of airborne gamma spectrometry. IAEA TECDOC-827, pp 71–91, November 1993

    Google Scholar 

  15. Hubbell J (1969) Photon cross sections, attenuation coefficients and energy absorption coefficients from 10 keV to 100 GeV

    Google Scholar 

  16. UNSCEAR (2013) Sources, effects and risks of ionizing radiation. Technical report, United Nations, New York

    Google Scholar 

  17. Civil Aviation Authority (2016) Small unmanned aircraft - specific regulations about small drones

    Google Scholar 

  18. Moxham RM (1960) Airborne radioactivity surveys in geologic exploration. Geophysics 25(4):408–432

    Article  ADS  Google Scholar 

  19. Duval JS, Cook B, Adams JAS (1971) Circle of investigation of an airborne gamma-ray spectrometer. J Geophys Res 76(12):8466–8470

    Article  ADS  Google Scholar 

  20. Connor D, Martin PG, Scott TB (2016) Airborne radiation mapping: overview and application of current and future aerial systems. Int J Remote Sens 37(12):5953–5987

    Article  Google Scholar 

  21. S-i Okuyama, Torii T, Suzuki A, Shibuya M, Miyazaki N (2008) A remote radiation monitoring system using an autonomous unmanned helicopter for nuclear emergencies. J Nucl Sci Technol 45(8):414–416

    Google Scholar 

  22. Sanada Y, Orita T, Torii T (2016) Temporal variation of dose rate distribution around the Fukushima Daiichi nuclear power station using unmanned helicopter. Appl Radiat Isot 118:308–316

    Article  Google Scholar 

  23. Malins A, Okumura M, Machida M, Takemiya H, Saito K (2015) Fields of view for environmental radioactivity. In: Proceedings of the international symposium on radiological issues for Fukushima’s revitalized future, pp 28–34, 9 2015

    Google Scholar 

  24. Grasty R, Kosanke K, Foote R (1979) Fields of view of airborne gamma-ray detectors. Geophysics 44(8):1447–1457

    Article  ADS  Google Scholar 

  25. Cresswell AJ, Sanderson DCW (2009) The use of difference spectra with a filtered rolling average background in mobile gamma spectrometry measurements. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 607(3):685–694

    Article  ADS  Google Scholar 

  26. MEXT and US Department of Energy (2011) Results of the airborne monitoring by the Ministry of Education, Culture, Sports, Science and Technology and the U.S. Department of Energy, 6th May. Technical report

    Google Scholar 

  27. TEPCO (2011) Measurement data at Fukushima Daiichi nuclear power station (in Japanese)

    Google Scholar 

  28. Masson O, Baeza A, Bieringer J, Brudecki K, Bucci S, Cappai M, Carvalho FP, Connan O, Cosma C, Dalheimer A, Didier D, Depuydt G, De Geer LE, De Vismes A, Gini L, Groppi F, Gudnason K, Gurriaran R, Hainz D, Halldorsson O, Hammond D, Hanley O, Holeý K, Homoki Z, Ioannidou A, Isajenko K, Jankovic M, Katzlberger C, Kettunen M, Kierepko R, Kontro R, Kwakman PJM, Lecomte M, Leon Vintro L, Leppänen A-P, Lind B, Lujaniene G, Mc Ginnity P, Mc Mahon C, Mala H, Manenti S, Manolopoulou M, Mattila A, Mauring A, Mietelski JW, Moller B, Nielsen SP, Nikolic J, Overwater RMW, Palsson SE, Papastefanou C, Penev I, Pham MK, Povinec PP, Ramebäck H, Reis MC, Ringer W, Rodriguez A, Rulik P, Saey PRJ, Samsonov V, Schlosser C, Sgorbati G, Silobritiene BV, Soderström C, Sogni R, Solier L, Sonck M, Steinhauser G, Steinkopff T, Steinmann P, Stoulos S, Sykora I, Todorovic D, Tooloutalaie N, Tositti L, Tschiersch J, Ugron A, Vagena E, Vargas A, Wershofen H, Zhukova O (2011) Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European networks. Environ Sci Tech 45(9):7670–7677

    Article  Google Scholar 

  29. Guss P (2011) DOE response to the radiological release from the Fukushima Dai-ichi nuclear power plant. Technical report

    Google Scholar 

  30. MEXT (2013) Results of the sixth airborne monitoring and airborne monitoring out of the 80 km zone of Fukushima Dai-ichi NPP. Technical report

    Google Scholar 

  31. NRA (2016) Results of the tenth airborne monitoring and airborne monitoring out of the 80 km zone of Fukushima Dai-ichi NPP. Technical report

    Google Scholar 

  32. NRA (2017) Results of the eleventh airborne monitoring and airborne monitoring out of the 80 km zone of Fukushima Dai-ichi NPP. Technical report

    Google Scholar 

  33. Won I, Keiswetterg D (1995) Geophex airborne unmanned survey system. In: Environmental technology development through industry partnership. Morgantown, West Virginia, p 12

    Google Scholar 

  34. Hofstetter KJ, Hayes DW, Pendergast MM (1995) Aerial robotic data acquisition system. J Radioanal Nucl Chem Artic 193(5):89–92

    Article  Google Scholar 

  35. Towler J, Krawiec B, Kochersberger K (2012) Radiation mapping in post-disaster environments using an autonomous helicopter. Remote Sens 4(7):1995–2015

    Article  ADS  Google Scholar 

  36. Yamaha. RMAX Type 1/Type 1G

    Google Scholar 

  37. Sanada Y, Kondo A, Sugita T, Nishizawa Y, Youichi Y, Kazutaka I, Yasunori S, Torii T (2014) Radiation monitoring using an unmanned helicopter in the evacuation zone around the Fukushima Daiichi nuclear power plant. Explor Geophys 3

    Google Scholar 

  38. Sanada Y, Kondo A, Sugita T, Torii T (2012) Distribution of radioactive cesium measured by aerial radiation monitoring. Hoshasen 38(3):137–140

    Google Scholar 

  39. Kurvinen K, Smolander P, Pöllänen R, Kuukankorpi S, Kettunen M, Lyytinen J (2005) Design of a radiation surveillance unit for an unmanned aerial vehicle. J Environ Radioact 81(1):1–10

    Article  Google Scholar 

  40. Pöllänen R, Toivonen H, Peräjärvi K, Karhunen T, Ilander T, Lehtinen J, Rintala K, Katajainen T, Niemelä J, Juusela M (2009) Radiation surveillance using an unmanned aerial vehicle. Appl Radiat Isot 67(2):340–344

    Article  Google Scholar 

  41. Boudergui K, Carrel F, Domenech T, Guenard N, Poli J-P, Ravet A, Schoepff V, Woo R (2011) Development of a drone equipped with optimized sensors for nuclear and radiological risk characterization. In: 2011 2nd international conference on advancements in nuclear instrumentation, measurement methods and their applications. IEEE, pp 1–9, 6 2011

    Google Scholar 

  42. Guenard N, Hamel T, Eck L (2006) Control laws for the tele operation of an unmanned aerial vehicle known as an X4-flyer. In: IEEE international conference on intelligent robots and systems. IEEE, pp 3249–3254, 10 2006

    Google Scholar 

  43. MacFarlane JW, Payton OD, Keatley AC, Scott GPT, Pullin H, Crane RA, Smilion M, Popescu I, Curlea V, Scott TB (2014) Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies. J Environ Radioact 136(10):127–130

    Article  Google Scholar 

  44. Aleotti J, Micconi G, Caselli S, Benassi G, Zambelli N, Calestani D, Zanichelli M, Bettelli M, Zappettini A. Unmanned aerial vehicle equipped with spectroscopic CdZnTe detector for detection and identification of radiological and nuclear material. In: 2015 IEEE nuclear science symposium and medical imaging conference (NSS/MIC). IEEE, pp 1–5, 10 2015

    Google Scholar 

  45. Martin P, Payton O, Fardoulis J, Richards D, Yamashiki Y, Scott T (2016) Low altitude unmanned aerial vehicle for characterising remediation effectiveness following the FDNPP accident. J Environ Radioact 151(1):58–63

    Article  Google Scholar 

  46. Martin P, Payton O, Yamashiki Y, Richards D, Scott T (2016) High-resolution radiation mapping to investigate FDNPP derived contaminant migration. J Environ Radioact 164:26–35

    Article  Google Scholar 

  47. FLYCAM UAV (2017) Airborne radiation detection

    Google Scholar 

  48. Safecast (2016) About safecast

    Google Scholar 

  49. Ikuta M, Gobara H, Tanaka A, Kimura K (2012) Car-borne survey using Ge semiconductor detector in the Chugoku region of Japan. Jpn J Health Phys 47(8):198–203

    Article  Google Scholar 

  50. Tsuda S, Yoshida T, Sato T, Seki A, Matsuda N, Ando M, Saito K, Nakahara Y, Takemiya H, Tanigaki M, Takamiya K, Sato N, Okumura R, Kobayashi Y, Yoshinaga H, Yoshino H, Uchihori Y, Ishikawa M, Iwaoka K (2013) Construction of a car-borne survey system for measurement of dose rates in air. KURAMA-II, and its application. JAEA Technol 2013–037:68

    Google Scholar 

  51. Imanaka T, Endo S, Sugai M, Ozawa S, Shizuma K, Yamamoto M (2011) Early radiation survey of Iitate village, which was heavily contaminated by the Fukushima Daiichi accident, conducted on 28 and 29 March 2011. Health Phys 102(6):680–686

    Article  Google Scholar 

  52. Hamamatsu Photonics KK (2017) Hamamatsu C12137-series specification. Technical report, Hamamatsu City

    Google Scholar 

  53. Malins A, Okumura M, Machida M, Saito K (2015) Topographic effects on ambient dose equivalent rates from radiocesium fallout, p 7, 2 2015

    Google Scholar 

  54. Ishizuka M, Mikami M, Tanaka TY, Igarashi Y, Kita K, Yamada Y, Yoshida N, Toyoda S, Satou Y, Kinase T, Ninomiya K, Shinohara A (2015) Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface

    Google Scholar 

  55. Amato F, Schaap M, Denier van der Gon HAC, Pandolfi M, Alastuey A, Keuken M, Querol X (2013) Short-term variability of mineral dust, metals and carbon emission from road dust resuspension. Atmos Environ 74:134–140

    Article  ADS  Google Scholar 

  56. Jones HE, Cunningham JR (1983) Physics of radiology, 4th edn. Thomas Publishing, Springfield, Illinois, USA

    Google Scholar 

  57. Buchanan E, Cresswell A, Seitz B, Sanderson D (2016) Operator related attenuation effects in radiometric surveys. Radiat Meas 86(3):24–31

    Article  Google Scholar 

  58. Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi nuclear power plant accident and associated estimated cumulative external dose estimation. J Environ Radioact 111(9):18–27

    Article  Google Scholar 

  59. Saito K, Tanihata I, Fujiwara M, Saito T, Shimoura S, Otsuka T, Onda Y, Hoshi M, Ikeuchi Y, Takahashi F, Kinouchi N, Saegusa J, Seki A, Takemiya H, Shibata T (2014) Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 139(4):308–319

    Google Scholar 

  60. Aoyama M, Tsumune D, Hamajima Y (2013) Distribution of 137Cs and 134Cs in the North Pacific Ocean: impacts of the TEPCO Fukushima-Daiichi NPP accident. J Radioanal Nucl Chem 296(4):535–539

    Article  Google Scholar 

  61. Buesseler KO, Jayne SR, Fisher NS, Rypina II, Baumann H, Baumann Z, Breier CF, Douglass EM, George J, Macdonald AM, Miyamoto H, Nishikawa J, Pike SM, Yoshida S (2012) Fukushima-derived radionuclides in the ocean and biota off Japan. Proc Natl Acad Sci USA 109(4):5984–5988

    Article  ADS  Google Scholar 

  62. Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471(2):800–817

    Article  ADS  Google Scholar 

  63. Ronneau C, Cara J, Apers D (1967) The deposition of radionuclides from Chernobyl to a forest in Belgium. Atmos Environ 21(1):1467–1468

    Article  ADS  Google Scholar 

  64. Kirchner G, Noack CC (1988) Core history and nuclide inventory of the Chernobyl core at the time of accident. Nucl Saf 29(1):1–5

    Google Scholar 

  65. Ducros G, Malgouyres PP, Kissane M, Boulaud D, Durin M (2001) Fission product release under severe accidental conditions: General presentation of the program and synthesis of VERCORS 1–6 results. Nucl Eng Des 208(2):191–203

    Article  Google Scholar 

  66. Pontillon Y, Ducros G (2010) Behaviour of fission products under severe PWR accident conditions. The VERCORS experimental programme - part 3: release of low-volatile fission products and actinides. Nucl Eng Des 240(7):1867–1881

    Google Scholar 

  67. Pontillon Y, Ducros G (2010) Behaviour of fission products under severe PWR accident conditions. The VERCORS experimental programma - part 2: release and transport of fission gases and volatile products. Nucl Eng Des 240(7):1853–1866

    Google Scholar 

  68. Pontillon Y, Ducros G, Malgouyres P (2010) Behaviour of fission products under severe PWR accident conditions VERCORS experimental programme - part 1: general description of the programme. Nucl Eng Des 240(7):1843–1852

    Article  Google Scholar 

  69. von der Hardt P, Tattegrain A (1992) The Phebus fission product project. J Nucl Mater 188(6):115–130

    Article  ADS  Google Scholar 

  70. OECD (2009) Nuclear fuel behaviour in loss-of-coolant accident (LOCA) conditions. Technical report

    Google Scholar 

  71. Press CRC (2015) CRC handbook of chemistry and physics - table of isotopes, 96th edn. Florida, Boca Raton

    Google Scholar 

  72. Crouch E (1977) Fission-product yields from neutron-induced fission. Atomic Data Nucl Data Tables 19(5):417–532

    Article  ADS  Google Scholar 

  73. Schwantes JM, Orton CR, Clark RA (2012) Analysis of a nuclear accident: fission and activation product releases from the Fukushima Daiichi nuclear facility as remote indicators of source identification, extent of release, and state of damaged spent nuclear fuel. Environ Sci Technol 46(8):8621–8627

    Article  ADS  Google Scholar 

  74. Avery SV (1996) Fate of caesium in the environment: distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems. J Environ Radioact 30(1):139–171

    Article  Google Scholar 

  75. U.S. Atomic Energy Commission, (1957) Theoretical possibilities and consequences of major accidents in large nuclear power plants. Technical report, Washington

    Google Scholar 

  76. Ewing RC, Murakami T (2012) Fukushima Daiichi more than one year later. Elements 8(2010):181–182

    Article  Google Scholar 

  77. IAEA (2017) Cumulative fission yields

    Google Scholar 

  78. Zinkle S, Was G (2013) Materials challenges in nuclear energy. Acta Materialia 61(2):735–758

    Article  Google Scholar 

  79. Burns PC, Ewing RC, Navrotsky A (2012) Nuclear fuel in a reactor accident. Science 335(3):1184–1188

    Article  ADS  Google Scholar 

  80. TEPCO and IRID (2017) Locating fuel debris inside the unit 3 reactor using a muon measurement technology at Fukushima Daiichi nuclear power station. Technical report, Tokyo

    Google Scholar 

  81. TEPCO and IRID (2016) Locating fuel debris inside the unit 2 reactor using a muon measurement technology at Fukushima Daiichi nuclear power station. Technical report, Tokyo

    Google Scholar 

  82. TEPCO and IRID (2015) Reactor imaging technology for fuel debris detection by cosmic ray muon: measurement status report in unit 1. Technical report, Tokyo

    Google Scholar 

  83. UNSCEAR (2000) Sources and effects of ionizing radiation: volumes I and II. Technical report, United Nations, New York

    Google Scholar 

  84. Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48(7):1129–1134

    Article  Google Scholar 

  85. UNSCEAR (2008) Sources and effects of ionising radiation. Technical report, United Nations, New York

    Google Scholar 

  86. Stohl A, Seibert P, Wotawa G, Arnold D, Burkhart JF, Eckhardt S, Tapia C, Vargas A, Yasunari TJ (2012) Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys 12(3):2313–2343

    Article  ADS  Google Scholar 

  87. Friese JI, Kephart RF, Lucas DD (2013) Comparison of radionuclide ratios in atmospheric nuclear explosions and nuclear releases from Chernobyl and Fukushima seen in gamma ray spectrometry. J Radioanal Nucl Chem 296(5):899–903

    Article  Google Scholar 

  88. Imanaka T, Hayashi G, Endo S (2015) Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1. J Radiat Res 56(12):56–61

    Article  Google Scholar 

  89. Shibahara Y, Kubota T, Fujii T, Fukutani S, Ohta T, Takamiya K, Okumura R, Mizuno S, Yamana H (2014) 235U/238U isotopic ratio in plant samples from Fukushima prefecture. J Radioanal Nucl Chem 303(9):1421–1424

    Google Scholar 

  90. Shibahara Y, Kubota T, Fujii T, Fukutani S, Takamiya K, Konno M, Mizuno S, Yamana H (2015) Determination of isotopic ratios of plutonium and uranium in soil samples by thermal ionization mass spectrometry. J Radioanal Nucl Chem 307(10):2281–2287

    Google Scholar 

  91. Shinonaga T, Steier P, Lagos M, Ohkura T (2014) Airborne plutonium and non-natural uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions. Environ Sci Technol 48(4):3808–3814

    Article  ADS  Google Scholar 

  92. Zheng J, Tagami K, Watanabe Y, Uchida S, Aono T, Ishii N, Yoshida S, Kubota Y, Fuma S, Ihara S (2012) Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci Rep 2(1):8

    Google Scholar 

  93. Schneider S, Bister S, Christl M, Hori M, Shozugawa K, Synal H-A, Steinhauser G, Walther C (2017) Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 2: forensic search for the forgotten contaminants uranium-236 and plutonium. Appl Geochem 85(B):194–200

    Google Scholar 

  94. Steinhauser G (2014) Fukushima’s forgotten radionuclides: a review of the understudied radioactive emissions. Environ Sci Technol 48(5):4649–4663

    Article  ADS  Google Scholar 

  95. Timbrell J (1999) Principles of biochemical toxicology, vol 1, 3rd edn. CRC Press, London

    Google Scholar 

  96. Runde W (2000) The chemical interactions of actinides in the environment. Los Alamos Sci 26:392–411

    Google Scholar 

  97. De Cort M (1998) Atlas of caesium deposition on Europe after the Chernobyl accident. IAEA, Technical report

    Google Scholar 

  98. Anspaugh L, Catlin R, Goldman M (1988) The global impact of the Chernobyl reactor accident. Science 242(12):1513–1519

    Article  ADS  Google Scholar 

  99. Kawamura H, Kobayashi T, Furano A, In T, Ishikawa Y, Nakayama T, Shima S, Awaji T (2011) Preliminary Numerical experiments on oceanic dispersion of 131 I and 137 Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. J Nucl Sci Technol 48(11):1349–1356

    Article  Google Scholar 

  100. Morino Y, Ohara T, Nishizawa M (2011) Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys Res Lett 38:4

    Article  Google Scholar 

  101. Geological Survey of Japan (2015) Geological Survey of Japan (GSJ), AIST

    Google Scholar 

  102. Geospatial Information Authority of Japan (2017) Maps and geospatial information

    Google Scholar 

  103. Chino M, Terada H, Nagai H, Katata G, Mikami S, Torii T, Saito K, Nishizawa Y, Chino M, Katata G, Ota M, Terada H, Chino M, Nagai H, Terada H, Katata G, Chino M, Nagai H, Kobayashi T, Nagai H, Chino M, Kawamura H, Katata G, Tanabe F, Hidaka A, Ishikawa J, Mikami S, Nishizawa Y, Yoshida M, Sanada Y, Torii T, Terada H, Chino M, Tanabe F, Komori Terada H, Furuno A, Chino M, Sanada N, Torii T (2016) Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident. Sci Rep 6(8):14

    Google Scholar 

  104. METI (2011) Restricted area, deliberate evacuation area and regions including specific spots recommended for evacuation

    Google Scholar 

  105. Government of Japan (2011) Act on special measures concerning the handling of radioactive pollution

    Google Scholar 

  106. METI (2015) Areas to which evacuation orders have been issued

    Google Scholar 

  107. Kurokawa K, Ishibashi K, Oshima K, Sakiyama H, Sakurai M, Tanaka K, Tanaka M, Nomura S, Hachisuka R, Yokoyama Y (2012) The national diet of Japan: Fukushima nuclear accident independent investigation commission. The national diet of Japan

    Google Scholar 

  108. Fukushima on the globe (2014) Fukushima hinansya: evacuees by number. Technical report

    Google Scholar 

  109. Waddington I, Thomas P, Taylor R, Vaughan G (2017) J-value assessment of relocation measures following the nuclear power plant accidents at Chernobyl and Fukushima Daiichi. Process Saf Environ Prot 112(11):16–49

    Article  Google Scholar 

  110. Takahashi T (2016) Radiological issues for Fukushima, Äôs revitalized future

    Google Scholar 

  111. Nishihara K, Iwamoto H, Suyama K (2012) Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant. JAEA 2012-2018

    Google Scholar 

  112. Yamamoto M, Sakaguchi A, Ochiai S, Takada T, Hamataka K, Murakami T, Nagao S (2014) Isotopic Pu, Am and Cm signatures in environmental samples contaminated by the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 132(6):31–46

    Article  Google Scholar 

  113. Shibahara Y, Kubota T, Fujii T, Fukutani S, Ohta T, Takamiya K, Okumura R, Mizuno S, Yamana H (2014) Analysis of cesium isotope compositions in environmental samples by thermal ionization mass spectrometry 1. A preliminary study for source analysis of radioactive contamination in Fukushima prefecture. J Nucl Sci Technol 51(3):575–579

    Google Scholar 

  114. Zheng J, Tagami K, Bu W, Uchida S, Watanabe Y, Kubota Y, Fuma S, Ihara S (2014) 135Cs/137Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident. Environ Sci Technol 48(5):5433–5438

    Article  ADS  Google Scholar 

  115. Snow MS, Snyder DC, Delmore JE (2016) Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples. Rapid Commun Mass Spectrom: RCM 30(2):523–532

    Article  Google Scholar 

  116. Yang G, Tazoe H, Yamada M (2016) 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi nuclear power plant accident. Sci Rep 6(24119):8

    Google Scholar 

  117. TEPCO (2012) Fukushima nuclear accident analysis report 2012. Technical report, Tokyo

    Google Scholar 

  118. Satou Y (2016) Study of relationship between deposition of radioactive materials and radioactive particles in the difficult-to-return zone caused by the Fukushima Dai-ichi nuclear power plant accident. PhD thesis, University of Tsukuba

    Google Scholar 

  119. Press CRC (2015) CRC handbook of chemistry and physics - summary properties of the elements, 96th edn. Florida, Boca Raton

    Google Scholar 

  120. Mikami S, Maeyama T, Hoshide Y, Sakamoto R, Sato S, Okuda N, Demongeot S, Gurriaran R, Uwamino Y, Kato H, Fujiwara M, Sato T, Takemiya H, Saito K (2015) Spatial distributions of radionuclides deposited onto ground soil around the Fukushima Dai-ichi nuclear power plant and their temporal change until December 2012. J Environ Radioact 139(1):320–343

    Article  Google Scholar 

  121. TEPCO (2013) Overview of facility of Fukushima Daiichi nuclear power station

    Google Scholar 

  122. Sawhney BL (1972) Selective sorption and fixation of cations by clay minerals. A review. Clays Clay Miner 20:93–100

    Article  ADS  Google Scholar 

  123. Cremers A, Elsen A, Preter PD, Maes A (1988) Quantitative analysis of radiocaesium retention in soils. Nature 335(9):247–249

    Article  ADS  Google Scholar 

  124. Mukai H, Hatta T, Kitazawa H, Yamada H, Yaita T, Kogure T (2014) Speciation of radioactive soil particles in the Fukushima contaminated area by IP autoradiography and microanalyses. Environ Sci Technol 48(10):13053–13059

    Article  ADS  Google Scholar 

  125. Broda R (1986) Gamma spectroscopy analysis of hot particles from the Chernobyl fallout. Technical report

    Google Scholar 

  126. Devell L, Tovedal H, Bergström U, Appelgren A, Chyssler J, Andersson L (1986) Initial observations of fallout from the reactor accident at Chernobyl. Nature 321(5):192–193

    Article  ADS  Google Scholar 

  127. Falk R, Suomela J, Kerekes A (1988) A study of hot particles collected in Sweden one year after the chernobyl accident. J Aerosol Sci 19(1):1339–1342

    Article  ADS  Google Scholar 

  128. Sandalls F, Segal M, Victorova N (1993) Hot particles from Chernobyl: a review. J Environ Radioact 18(1):5–22

    Article  Google Scholar 

  129. Buck EC, Hanson BD, McNamara BK (2004) The geochemical behaviour of Tc, Np and Pu in spent nuclear fuel in an oxidizing environment. Geol Soc Lond Spec Publ 236(1):65–88

    Article  Google Scholar 

  130. Bruno J, Ewing RC (2006) Spent nuclear fuel. Elements 2(12):343–349

    Article  Google Scholar 

  131. Edvarson K, Low K, Sisefsky J (1959) Fractionation phenomena in nuclear weapons debris. Nature 184(12):1771–1774

    Article  ADS  Google Scholar 

  132. Adams C, Farlow N, Schell W (1960) The compositions, structures and origins of radioactive fall-out particles. Geochimica et Cosmochimica Acta 18(1):42–56

    Article  ADS  Google Scholar 

  133. Mackin J, Zigman P, Love D, Macdonald D, Sam D (1960) Radiochemical analysis of individual fall-out particles. J Inorg Nucl Chem 15(9):20–36

    Article  Google Scholar 

  134. Kelley J, Bond L, Beasley T (1999) Global distribution of Pu isotopes and 237Np. Sci Total Environ 237–238(9):483–500

    Article  ADS  Google Scholar 

  135. Hu Q-H, Weng J-Q, Wang J-S (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 101(6):426–37

    Article  Google Scholar 

  136. Lind OC, Salbu B, Janssens K, Proost K, García-León M (1968) García-Tenorio R (2007) Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland. Sci Total Environ 376(4):294–305

    ADS  Google Scholar 

  137. Pöllänen R, Ketterer ME, Lehto S, Hokkanen M, Ikäheimonen TK, Siiskonen T, Moring M, Rubio Montero MP, Martín Sánchez A (2006) Multi-technique characterization of a nuclear bomb particle from the Palomares accident. J Environ Radioact 90(1):15–28

    Article  Google Scholar 

  138. López JG, Jiménez-Ramos M, García-León M, García-Tenorio R (2007) Characterisation of hot particles remaining in soils from Palomares (Spain) using a nuclear microprobe. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atom 260(7):343–348

    Article  ADS  Google Scholar 

  139. Crean DE, Livens FR, Stennett MC, Grolimund D, Borca CN, Hyatt NC (2014) Microanalytical X-ray imaging of depleted uranium speciation in environmentally aged munitions residues. Environ Sci Technol 48(1):1467–1474

    Article  ADS  Google Scholar 

  140. Livens F, Baxter M (1988) Particle size and radionuclide levels in some west Cumbrian soils. Sci Total Environ 70(3):1–17

    Article  ADS  Google Scholar 

  141. Pollanen R (2002) Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses. PhD thesis, University of Helsinki

    Google Scholar 

  142. Salbu B, Krekling T (1998) Characterisation of radioactive particles in the environment. The Analyst 123(1):843–850

    Article  ADS  Google Scholar 

  143. Salbu B, Lind OC (2005) Radioactive particles released from various nuclear sources. Radioprotection 40(6):S27–S32

    Article  Google Scholar 

  144. West M et al (2016) Atomic spectrometry Update a review of advances in X-ray fluorescence spectrometry and its applications. J Anal Atom Spectrom 31(9):1706–1755

    Article  Google Scholar 

  145. IAEA (2015) Nuclear forensics in support of investigations

    Google Scholar 

  146. Ono T, Yushin I, Abe Y, Nakai I, Terada Y, Satou Y, Sueki K, Adachi K, Igarashi Y (2017) Investigation of the chemical characteristics of individual radioactive microparticles emitted from reactor 1 by the Fukushima Daiichi nuclear power plant accident by using multiple synchrotron radiation X-ray analyses. Bunseki Kagaku 66(4):251–261

    Article  Google Scholar 

  147. Adachi K, Kajino M, Zaizen Y, Igarashi Y (2013) Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci Rep 3(1):5

    Google Scholar 

  148. Abe Y, Iizawa Y, Terada Y, Adachi K, Igarashi Y, Nakai I (2014) Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal Chem 86(9):8521–8525

    Article  Google Scholar 

  149. Yamaguchi N, Mitome M, Kotone A-H, Asano M, Adachi K, Kogure T (2016) Internal structure of cesium-bearing radioactive microparticles released from Fukushima nuclear power plant. Sci Rep 6(2):6

    Google Scholar 

  150. Kogure T, Yamaguchi N, Segawa H, Mukai H, Motai S, Akiyama-Hasegawa K, Mitome M, Hara T, Yaita T (2016) Constituent elements and their distribution in the radioactive Cs-bearing silicate glass microparticles released from Fukushima nuclear plant. Microscopy 65(8):451–459

    Article  Google Scholar 

  151. Satou Y, Sueki K, Sasa K, Adachi K, Igarashi Y (2016) First successful isolation of radioactive particles from soil near the Fukushima Daiichi nuclear power plant. Anthropocene 14(6):71–76

    Article  Google Scholar 

  152. Higaki S, Kurihara Y, Yoshida H, Takahashi Y (2017) Discovery of non-spherical heterogeneous radiocesium-bearing particles not derived from unit 1 of the Fukushima Dai-ichi nuclear power plant, in residences five years after the accident. J Environ Radioact 177:65–70

    Article  Google Scholar 

  153. Furuki G, Imoto J, Ochiai A, Yamasaki S, Nanba K, Ohnuki T, Grambow B, Ewing RC, Utsunomiya S (2017) Caesium-rich micro-particles: a window into the meltdown events at the Fukushima Daiichi nuclear power plant. Sci Rep 7(2):10

    Google Scholar 

  154. Balerna A, Mobilio S (2015) Introduction to synchrotron radiation. In: Synchrotron radiation: basics, methods and applications. Springer, Berlin, p 799

    Google Scholar 

  155. IAEA (2015) Technical volume 1 of 5: description and context of the accident. In: The Fukushima Daiichi accident, Vienna, Austria. IAEA, p 238

    Google Scholar 

  156. Yasutaka T, Naito W, Nakanishi J (2013) Cost and effectiveness of decontamination strategies in radiation contaminated areas in Fukushima in regard to external radiation dose. PloS one 8(1):e75308

    Article  ADS  Google Scholar 

  157. Japanese Ministry of the Environment (Government of Japan) (2012) Management of off-site waste contaminated with radioactive materials due to the accident at Fukushima nuclear power stations. Technical report, Tokyo

    Google Scholar 

  158. Fesenko S, Balonov M, Pröhl G, Nakayama S, Howard BJ (2006) A comparison of remediation after the Chernobyl and Fukushima Daiichi accidents. Radiat Prot Dosim 11:1–7

    Google Scholar 

  159. Japan Meteorological Agency, Monthly total of precipitation (mm) - Japan Meteorological Agency

    Google Scholar 

  160. IAEA (2015) Technical volume 5 of 5: post accident recovery. In: The Fukushima Daiichi accident, Vienna, Austria. IAEA, p 218

    Google Scholar 

  161. Fukushima Reconstruction Agency (2017) Reconstruction from nuclear disaster and the history of safety and revitalization of Fukushima. Technical report, Fukushima Reconstruction Agency

    Google Scholar 

  162. Yasutaka T, Naito W (2016) Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture. Japan. J Environ Radioact 151(1):512–520

    Article  Google Scholar 

  163. UK National Audit Office (2015) Nuclear decommissioning authority - progress on the Sellafield site: an update. Technical report, National Audit Office (NAO)

    Google Scholar 

  164. Japanese Ministry of the Environment (Government of Japan) (2017) Environmental remediation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter George Martin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin, P.G. (2019). Response, Contamination and Release Estimates . In: The 2011 Fukushima Daiichi Nuclear Power Plant Accident. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-17191-9_2

Download citation

Publish with us

Policies and ethics