Skip to main content

Advances in the Detection of Pathogens in Sepsis Diagnostics

  • Chapter
  • First Online:
Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems
  • 1160 Accesses

Abstract

Sepsis is one of the most critical clinical conditions caused by a bloodstream infection. Confirmation of the presence of a pathogen in blood remains very challenging for in vitro diagnostics. The gold standard method for it is based on blood cultures, which can take several days. The mortality rate for sepsis progressively increases during each hour without therapy; therefore, much more rapid diagnostic methods are essential for combating sepsis. This chapter reviews modern methods and advances in the detection of pathogens in sepsis. Although currently there is no method that is considered to replace the gold standard protocol in the nearest time, many of the described technologies significantly reduce time-to-result and can streamline therapy and increase survival rates for sepsis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunkhorst FM, Gastmeier P, Abu Sin M. Current aspects of the definition and diagnosis of sepsis and antibiotic resistance [Article in German]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61(5):562–71.

    Article  Google Scholar 

  2. Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–72.

    Article  CAS  Google Scholar 

  3. Alberti C, Brun-Buisson C, Goodman SV, et al. Influence of systemic inflammatory response syndrome and sepsis on outcome of critically ill infected patients. Am J Respir Crit Care Med. 2003;168(1):77–84.

    Article  Google Scholar 

  4. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–96.

    Article  Google Scholar 

  5. Dreyer AW. 2012. https://www.intechopen.com/books/sepsis-an-ongoing-and-significant-challenge/blood-culture-systems-from-patient-to-result. Accessed 30 Aug 2018.

  6. Fournier PE, Gouriet F, Casalta JP, et al. Blood culture-negative endocarditis: improving the diagnostic yield using new diagnostic tools. Medicine (Baltimore). 2017;96(47):e8392.

    Article  Google Scholar 

  7. Naber CK, Erbel R. Diagnosis of culture negative endocarditis: novel strategies to prove the suspect guilty. Heart. 2003;89(3):241–3.

    Article  CAS  Google Scholar 

  8. Bloos F. Clinical diagnosis of sepsis and the combined use of biomarkers and culture- and non-culture-based assays. Methods Mol Biol. 2015;1237:247–60.

    Article  CAS  Google Scholar 

  9. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med. 2013;41(2):580–637.

    Article  Google Scholar 

  10. Henry NK, McLimans CA, Wright AJ, et al. Microbiological and clinical evaluation of the isolator lysis-centrifugation blood culture tube. J Clin Microbiol. 1983;17(5):864–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kreger BE, Craven DE, Carling PC, McCabe WR. Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med. 1980;68(3):332–43.

    Article  CAS  Google Scholar 

  12. Werner AS, Cobbs CG, Kaye D, Hook EW. Studies on the bacteremia of bacterial endocarditis. JAMA. 1967;202(3):199–203.

    Article  CAS  Google Scholar 

  13. Yagupsky P, Nolte FS. Quantitative aspects of septicemia. Clin Microbiol Rev. 1990;3(3):269–79.

    Article  CAS  Google Scholar 

  14. Bacconi A, Richmond GS, Baroldi MA, et al. Improved sensitivity for molecular detection of bacterial and Candida infections in blood. Clin Microbiol. 2014;52(9):3164–74.

    Article  CAS  Google Scholar 

  15. Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014;5(1):4–11.

    Article  Google Scholar 

  16. Paul M, Nielsen AD, Goldberg E, et al. Prediction of specific pathogens in patients with sepsis: evaluation of TREAT, a computerized decision support system. J Antimicrob Chemother. 2007;59(6):1204–7.

    Article  CAS  Google Scholar 

  17. Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence. 2014;5(1):213–8.

    Article  Google Scholar 

  18. Lehmann LE, Hunfeld KP, Emrich T, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol. 2007;197(3):313–24.

    Article  Google Scholar 

  19. Marco F. Molecular methods for septicemia diagnosis. Enferm Infecc Microbiol Clin. 2017;35(9):586–92.

    Article  Google Scholar 

  20. Sinha M, Jupe J, Mack H, et al. Emerging technologies for molecular diagnosis of sepsis. Clin Microbiol Rev. 2018;31(2):e00089–17.

    Article  CAS  Google Scholar 

  21. Stevenson M, Pandor A, Martyn-St James M, et al. Sepsis: the LightCycler SeptiFast Test MGRADE®, SepsiTest™ and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi – a systematic review and economic evaluation. Health Technol Assess. 2016;20(46):1–246.

    Article  Google Scholar 

  22. Ratzinger F, Tsirkinidou I, Haslacher H, et al. Evaluation of the Septifast MGrade test on standard care wards—a cohort study. PLoS One. 2016;11(3):e0151108.

    Article  Google Scholar 

  23. Straub J, Paula H, Mayr M, et al. Diagnostic accuracy of the ROCHE Septifast PCR system for the rapid detection of blood pathogens in neonatal sepsis—a prospective clinical trial. PLoS One. 2017;12(11):e0187688.

    Article  Google Scholar 

  24. Warhurst G, Dunn G, Chadwick P, et al. Rapid detection of health-care-associated bloodstream infection in critical care using multipathogen real-time polymerase chain reaction technology: a diagnostic accuracy study and systematic review. Health Technol Assess. 2015;19(35):1–142.

    Article  Google Scholar 

  25. Broad-range detection & identification of bacteria, yeast and fungi. 2018. http://www.sepsitest-blast.de. Accessed 18 Dec 2018.

  26. Kühn C, Disqué C, Mühl H, et al. Evaluation of commercial universal rRNA gene PCR plus sequencing tests for identification of bacteria and fungi associated with infectious endocarditis. J Clin Microbiol. 2011;49(8):2919–23.

    Article  Google Scholar 

  27. Loonen AJ, Bos MP, van Meerbergen B, et al. Comparison of pathogen DNA isolation methods from large volumes of whole blood to improve molecular diagnosis of bloodstream infections. PLoS One. 2013;8(8):e72349.

    Article  CAS  Google Scholar 

  28. Hilali F, Saulnier P, Chachaty E, Andremont A. Decontamination of polymerase chain reaction reagents for detection of low concentrations of 16S rRNA genes. Mol Biotechnol. 1997;7(3):207–16.

    Article  CAS  Google Scholar 

  29. Nieman AE, Savelkoul PHM, Beishuizen A, et al. A prospective multicenter evaluation of direct molecular detection of blood stream infection from a clinical perspective. BMC Infect Dis. 2016;16:314.

    Article  CAS  Google Scholar 

  30. Haag H, Locher F, Nolte O. Molecular diagnosis of microbial aetiologies using SepsiTest™ in the daily routine of a diagnostic laboratory. Diagn Microbiol Infect Dis. 2013;76(4):413–8.

    Article  CAS  Google Scholar 

  31. Sontakke S, Cadenas MB, Maggi RG, et al. Use of broad range16S rDNA PCR in clinical microbiology. J Microbiol Methods. 2009;76:217–25.

    Article  CAS  Google Scholar 

  32. Denina M, Scolfaro C, Colombo S, et al. Magicplex(TM) Sepsis Real-Time test to improve bloodstream infection diagnostics in children. Eur J Pediatr. 2016;175(8):1107–11.

    Article  Google Scholar 

  33. Carrara L, Navarro F, Turbau M, et al. Molecular diagnosis of bloodstream infections with a new dual-priming oligonucleotide-based multiplex PCR assay. J Med Microbiol. 2013;62(11):1673–9.

    Article  Google Scholar 

  34. Seegene company webpage. 2018. http://www.seegene.com/neo/en/main/main.php. Accessed 11 Sep 2018.

  35. Chun J-Y, Kim K-J, Hwang I-T, et al. Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene. Nucleic Acids Res. 2007;35(6):e40.

    Article  Google Scholar 

  36. Bloos F, Sachse S, Kortgen A, et al. Evaluation of a polymerase chain reaction assay for pathogen detection in septic patients under routine condition: an observational study. PLoS One. 2012;7(9):e46003.

    Article  CAS  Google Scholar 

  37. Opota O, Jaton K, Greub G. Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin Microbiol Infect. 2015;21(4):323–31.

    Article  CAS  Google Scholar 

  38. Schreiber J, Nierhaus A, Braune SA, et al. Comparison of three different commercial PCR assays for the detection of pathogens in critically ill sepsis patients. Med Klin Intensivmed Notfmed. 2013;108(4):311–8.

    Article  CAS  Google Scholar 

  39. Springer J, Loeffler J, Heinz W, et al. Pathogen-specific DNA enrichment does not increase sensitivity of PCR for diagnosis of invasive aspergillosis in neutropenic patients. J Clin Microbiol. 2011;49(4):1267–73.

    Article  CAS  Google Scholar 

  40. Desmet S, Maertens J, Bueselinck K, Lagrou K. Broad-range PCR coupled with electrospray ionization time of flight mass spectrometry for detection of bacteremia and fungemia in patients with neutropenic fever. J Clin Microbiol. 2016;54(10):2513–20.

    Article  CAS  Google Scholar 

  41. Metzgar D, Frinder MW, Rothman RE, et al. The IRIDICA BAC BSI assay: rapid, sensitive and culture-independent identification of bacteria and candida in blood. PLoS One. 2016;11(7):e0158186.

    Article  Google Scholar 

  42. Hassan S, Adwaney A, Massiah A, et al. Rapid detection of acute infection in immunosuppressed renal patients with IRIDICA: a pilot study. Am J Transplant. 2016;16(suppl 3):731.

    Google Scholar 

  43. Ho C, Lam C, Chan M, et al. Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev. 2003;24(1):3–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jordana-Lluch E, Giménez M, Quesada MD, et al. Improving the diagnosis of bloodstream infections: PCR coupled with mass spectrometry. Biomed Res Int. 2014;2014:501214.

    Article  Google Scholar 

  45. Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. Int J Mass Spectrom Ion Process. 1987;78:53–68.

    Article  CAS  Google Scholar 

  46. Andersson M, Andren P, Caprioli RM. Chapter 7. MALDI imaging and profiling mass spectrometry in neuroproteomics. In: Alzate O, editor. Neuroproteomics. Boca Raton: CRC Press/Taylor & Francis; 2010.

    Google Scholar 

  47. Cobo F. Application of maldi-tof mass spectrometry in clinical virology: a review. Open Virol J. 2013;7:84–90.

    Article  Google Scholar 

  48. Keys CJ, Dare DJ, Sutton H, et al. Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterisation of bacteria implicated in human infectious diseases. Infect Genet Evol. 2004;4(3):221–42.

    Article  CAS  Google Scholar 

  49. Bizzini A, Greub G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect. 2010;16(11):1614–9.

    Article  CAS  Google Scholar 

  50. Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:791.

    Article  Google Scholar 

  51. Scott JS, Sterling SA, To H, Seals SR, Jones AE. Diagnostic performance of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry in blood bacterial infections: a systematic review and meta-analysis. Infect Dis. 2016;48(7):530–6.

    Article  CAS  Google Scholar 

  52. Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60(6):892–9.

    Article  CAS  Google Scholar 

  53. T2MR Applications. 2018. http://t2bio.wpengine.com/t2mr-technology. Accessed 07 Nov 2018.

  54. De Angelis G, Posteraro B, De Carolis E, et al. T2Bacteria magnetic resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood. J Antimicrob Chemother. 2018;73:iv20–6.

    Article  Google Scholar 

  55. Mylonakis E, Zacharioudakis IM, Clancy CJ, et al. Efficacy of T2 magnetic resonance assay in monitoring candidemia after initiation of antifungal therapy: the Serial Therapeutic and Antifungal Monitoring Protocol (STAMP) Trial. J Clin Microbiol. 2018;56(4):e01756–17.

    Article  Google Scholar 

  56. Mwaigwisya S, Assiri RA, O’Grady J. Emerging commercial molecular tests for the diagnosis of bloodstream infection. Expert Rev Mol Diagn. 2015;15(5):681–92.

    Article  CAS  Google Scholar 

  57. Fontana C, Favaro M, Pelliccioni M, et al. Use of the MicroSeq 500 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. J Clin Microbiol. 2005;43(2):615–9.

    Article  CAS  Google Scholar 

  58. Arosio M, Nozza F, Rizzi M, et al. Evaluation of the MicroSeq 500 16S rDNA-based gene sequencing for the diagnosis of culture-negative bacterial meningitis. New Microbiol. 2008;31(3):343–9.

    CAS  PubMed  Google Scholar 

  59. Deurenberg RH, Bathoorn E, Chlebowicz MA, et al. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol. 2016;243:16–24.

    Article  Google Scholar 

  60. Brenner T, Decker SO, Grumaz S, et al. Next-generation sequencing diagnostics of bacteremia in sepsis (Next GeneSiS-Trial): study protocol of a prospective, observational, noninterventional, multicenter, clinical trial. Medicine. 2018;97(6):e9868.

    Article  Google Scholar 

  61. Mitsuhashi S, Kryukov K, Nakagawa S, et al. A portable system for rapid bacterial composition analysis using a nanopore-based sequencer and laptop computer. Sci Rep. 2017;7:5657.

    Article  Google Scholar 

  62. Mwaigwisya S, Meader E, Jeanes C, et al. 2016. Rapid identification of bloodstream infection using MinION metagenomic sequencing. ESCMID conference poster.

    Google Scholar 

  63. Cartwright M, Rottman M, Shapiro NI, et al. A broad-spectrum infection diagnostic that detects pathogen-associated molecular patterns (PAMPs) in whole blood. EBioMedicine. 2016;9:217–27.

    Article  Google Scholar 

  64. Turner MW. The role of mannose-binding lectin in health and disease. Mol Immunol. 2003;40(7):423–9.

    Article  CAS  Google Scholar 

  65. Kang JH, Super M, Yung CW. An extracorporeal blood-cleansing device for sepsis therapy. Nat Med. 2014;20(10):1211–6.

    Article  CAS  Google Scholar 

  66. Kang D-K, Ali MM, Zhang K, et al. Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection. Nat Commun. 2014;5:5427.

    Article  CAS  Google Scholar 

  67. Ali MM, Aguirre SD, Lazim H, Li Y. Fluorogenic DNAzyme probes as bacterial indicators. Angew Chem Int. 2011;50(16):3751–4.

    Article  CAS  Google Scholar 

  68. Zhao W. Integrated Comprehensive Droplet Digital Detection (IC 3D) system for rapid detection of bacteria andantimicrobial resistance. 2018. http://grantome.com/grant/NIH/R01-AI117061-01. Accessed 07 Sept 2018.

  69. DNAe company webpage. 2018. https://www.dnae.com/. Accessed 11 Dec 2018.

  70. DNAe Acquires nanoMR Inc. in a Strategic Move to Own Complete Workflow for Point-Of-Need NGS-Based Blood-To-Result Diagnostic. 2015. https://www.businesswire.com/news/home/20150119005180/en/DNAe-Acquires-nanoMR-Strategic-Move-Complete-Workflow. Accessed 11 Dec 2018.

  71. Bauer R, Barnes S, Hall K. Rapid detection of clinically confirmed bloodstream pathogens in culture-negative specimens. 2018. https://www.dnae.com/assets/eccmid2018-poster_dnae-final.pdf. Accessed 11 Dec 2018.

  72. Drancourt M. Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin Microbiol Infect. 2010; 16(11):1620–5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Sandetskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandetskaya, N. (2019). Advances in the Detection of Pathogens in Sepsis Diagnostics. In: Williams, K. (eds) Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-17148-3_21

Download citation

Publish with us

Policies and ethics