Skip to main content

Long Non-coding RNAs in Vascular Health and Disease

  • Chapter
  • First Online:
Molecular Biology of Long Non-coding RNAs

Abstract

Long noncoding RNAs (lncRNAs) play important roles in the regulation of diverse biological processes within the vessel wall in health and disease. Emerging studies have identified unique mechanisms by which lncRNAs control gene expression and cell signaling pathways; however, the field is still nascent. While a growing number of lncRNAs have been functionally evaluated in response to pathophysiological stimuli or in vascular disease states, the biological roles for the majority of lncRNAs have yet to be uncovered. For example, lncRNAs may influence endothelial function by modulating endothelial cell proliferation (e.g., MALAT1, H19) or angiogenesis (e.g., MEG3, MANTIS). LncRNAs have also been found to modulate vascular smooth muscle cell (VSMC) phenotypes or vascular remodeling (e.g., ANRIL, SMILR, SENCR, MYOSLID). Finally, leukocyte-enriched lncRNAs may control leukocyte activation (e.g., lincRNA-Cox2, linc00305, THRIL), macrophage polarization (e.g., GAS5), and cholesterol metabolism (e.g., LeXis, MeXis). This chapter reviews recent findings on the expression, mechanism, and function of lncRNAs associated with diverse vascular disease states from mice to human subjects. Exploration of lncRNA biology in vascular disease may provide new insights into known signaling pathways, thereby uncovering opportunities for the generation of novel RNA-based biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard, L., & Rossi, J. J. (2007). RNAi therapeutics: Principles, prospects and challenges. Advanced Drug Delivery Reviews, 59, 75–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahadi, A., Brennan, S., Kennedy, P. J., Hutvagner, G., & Tran, N. (2016). Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes. Scientific Reports, 6, 24922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballantyne, M. D., Pinel, K., Dakin, R., Vesey, A. T., Diver, L., Mackenzie, R., Garcia, R., Welsh, P., Sattar, N., Hamilton, G., et al. (2016). Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation, 133, 2050–2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, D. A., Hooper, A. J., Watts, G. F., & Burnett, J. R. (2012). Mipomersen and other therapies for the treatment of severe familial hypercholesterolemia. Vascular Health and Risk Management, 8, 651–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, R. D., Long, X., Lin, M., Bergmann, J. H., Nanda, V., Cowan, S. L., Zhou, Q., Han, Y., Spector, D. L., Zheng, D., et al. (2014). Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 1249–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett, M. R., Sinha, S., & Owens, G. K. (2016). Vascular smooth muscle cells in atherosclerosis. Circulation Research, 118, 692–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchessi, V., Badi, I., Bertolotti, M., Nigro, P., D’Alessandra, Y., Capogrossi, M. C., Zanobini, M., Pompilio, G., Raucci, A., & Lauri, A. (2015). The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in endothelial cells. Journal of Molecular and Cellular Cardiology, 81, 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff, F. C., Werner, A., John, D., Boeckel, J. N., Melissari, M. T., Grote, P., Glaser, S. F., Demolli, S., Uchida, S., Michalik, K. M., et al. (2017). Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in pericytes. Circulation Research, 121, 368–375.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, D. T., Demenais, F., Iles, M. M., Harland, M., Taylor, J. C., Corda, E., Randerson-Moor, J., Aitken, J. F., Avril, M. F., Azizi, E., et al. (2009). Genome-wide association study identifies three loci associated with melanoma risk. Nature Genetics, 41, 920–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas, S., Thomas, A. A., Chen, S., Aref-Eshghi, E., Feng, B., Gonder, J., Sadikovic, B., & Chakrabarti, S. (2018). MALAT1: An epigenetic regulator of inflammation in diabetic retinopathy. Scientific Reports, 8, 6526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boon, R. A., Hofmann, P., Michalik, K. M., Lozano-Vidal, N., Berghauser, D., Fischer, A., Knau, A., Jae, N., Schurmann, C., & Dimmeler, S. (2016). Long noncoding RNA Meg3 controls endothelial cell aging and function: Implications for regenerative angiogenesis. Journal of the American College of Cardiology, 68, 2589–2591.

    Article  PubMed  Google Scholar 

  • Boulberdaa, M., Scott, E., Ballantyne, M., Garcia, R., Descamps, B., Angelini, G. D., Brittan, M., Hunter, A., McBride, M., McClure, J., et al. (2016). A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Molecular Therapy, 24, 978–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, Y., Yang, Y., Chen, X., Wu, G., Zhang, X., Liu, Y., Yu, J., Wang, X., Fu, J., Li, C., et al. (2016). Circulating ‘lncRNA OTTHUMT00000387022’ from monocytes as a novel biomarker for coronary artery disease. Cardiovascular Research, 112, 714–724.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, S., Aiello, D., Atianand, M. K., Ricci, E. P., Gandhi, P., Hall, L. L., Byron, M., Monks, B., Henry-Bezy, M., Lawrence, J. B., et al. (2013). A long noncoding RNA mediates both activation and repression of immune response genes. Science, 341, 789–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Cheng, G., Yang, X., Li, C., Shi, R., & Zhao, N. (2016a). Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a. American Journal of Translational Research, 8, 2981–2991.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Yao, H., Hui, J. Y., Ding, S. H., Fan, Y. L., Pan, Y. H., Chen, K. H., Wan, J. Q., & Jiang, J. Y. (2016b). Global transcriptomic study of atherosclerosis development in rats. Gene, 592, 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Guo, J., Cui, X., Dai, Y., Tang, Z., Qu, J., Raj, J. U., Hu, Q., & Gou, D. (2017a). Long non-coding RNA LnRPT is regulated by PDGF-BB and modulates proliferation of pulmonary artery smooth muscle cells. American Journal of Respiratory Cell and Molecular Biology, 58(2), 181–193.

    Article  Google Scholar 

  • Chen, R., Kong, P., Zhang, F., Shu, Y. N., Nie, X., Dong, L. H., Lin, Y. L., Xie, X. L., Zhao, L. L., Zhang, X. J., et al. (2017b). EZH2-mediated alpha-actin methylation needs lncRNA TUG1, and promotes the cortex cytoskeleton formation in VSMCs. Gene, 616, 52–57.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Yang, W., Guo, Y., Chen, W., Zheng, P., Zeng, J., & Tong, W. (2017c). Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One, 12, e0185406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Congrains, A., Kamide, K., Katsuya, T., Yasuda, O., Oguro, R., Yamamoto, K., Ohishi, M., & Rakugi, H. (2012). CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochemical and Biophysical Research Communications, 419, 612–616.

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias, S., Robinson, E. K., Shapleigh, B., Vollmers, A., Katzman, S., Hanley, N., Fong, N., McManus, M. T., & Carpenter, S. (2017a). CRISPR/Cas-based screening of long non-coding RNAs (lncRNAs) in macrophages with an NF-κB reporter. Journal of Biological Chemistry, 292, 20911–20920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covarrubias, S., Robinson, E. K., Shapleigh, B., Vollmers, A., Katzman, S., Hanley, N., Fong, N., McManus, M. T., & Carpenter, S. (2017b). CRISPR/Cas9-based screening of long noncoding RNAs (lncRNAs) in macrophages with an NF-kappa B reporter. The Journal of Biological Chemistry, 292(51), 20911–20920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curcio, A., Torella, D., & Indolfi, C. (2011). Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: Approach to therapy. Circulation Journal, 75, 1287–1296.

    Article  CAS  PubMed  Google Scholar 

  • de Gonzalo-Calvo, D., Kenneweg, F., Bang, C., Toro, R., van der Meer, R. W., Rijzewijk, L. J., Smit, J. W., Lamb, H. J., Llorente-Cortes, V., & Thum, T. (2016). Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Scientific Reports, 6, 37354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de los Campos, G., Gianola, D., & Allison, D. B. (2010). Predicting genetic predisposition in humans: The promise of whole-genome markers. Nature Reviews. Genetics, 11, 880–886.

    Article  PubMed  CAS  Google Scholar 

  • Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., et al. (2012). Landscape of transcription in human cells. Nature, 489, 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elling, R., Chan, J., & Fitzgerald, K. A. (2016). Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. European Journal of Immunology, 46, 504–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg, M. W. (2016). No small task: Therapeutic targeting of Lp(a) for cardiovascular disease. Lancet, 388, 2211–2212.

    Article  PubMed  Google Scholar 

  • Feinberg, M. W., & Moore, K. J. (2016). MicroRNA regulation of atherosclerosis. Circulation Research, 118, 703–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman, J. E., & Miano, J. M. (2017). Challenges and opportunities in linking long noncoding RNAs to cardiovascular, lung, and blood diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Galkina, E., & Ley, K. (2009). Immune and inflammatory mechanisms of atherosclerosis (*). Annual Review of Immunology, 27, 165–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, W., Zhu, M., Wang, H., Zhao, S., Zhao, D., Yang, Y., Wang, Z. M., Wang, F., Yang, Z. J., Lu, X., et al. (2015). Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population. Mutation Research, 772, 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Gast, M., Rauch, B. H., Nakagawa, S., Haghikia, A., Jasina, A., Haas, J., Nath, N., Jensen, L., Stroux, A., Bohm, A., et al. (2018). Immune system-mediated atherosclerosis caused by deficiency of long noncoding RNA MALAT1 in ApoE−/− mice. Cardiovascular Research, 115(2), 302–314.

    Article  Google Scholar 

  • Ge, D., Han, L., Huang, S., Peng, N., Wang, P., Jiang, Z., Zhao, J., Su, L., Zhang, S., Zhang, Y., et al. (2014). Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells. Autophagy, 10, 957–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez, D., Swiatlowska, P., & Owens, G. K. (2015). Epigenetic control of smooth muscle cell identity and lineage memory. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 2508–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, I., Munita, R., Agirre, E., Dittmer, T. A., Gysling, K., Misteli, T., & Luco, R. F. (2015). A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nature Structural & Molecular Biology, 22, 370–376.

    Article  CAS  Google Scholar 

  • Gordon, F. E., Nutt, C. L., Cheunsuchon, P., Nakayama, Y., Provencher, K. A., Rice, K. A., Zhou, Y., Zhang, X., & Klibanski, A. (2010). Increased expression of angiogenic genes in the brains of mouse meg3-null embryos. Endocrinology, 151, 2443–2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gschwendtner, A., Bevan, S., Cole, J. W., Plourde, A., Matarin, M., Ross-Adams, H., Meitinger, T., Wichmann, E., Mitchell, B. D., Furie, K., et al. (2009). Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Annals of Neurology, 65, 531–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumireddy, K., Li, A., Yan, J., Setoyama, T., Johannes, G. J., Orom, U. A., Tchou, J., Liu, Q., Zhang, L., Speicher, D. W., et al. (2013). Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. The EMBO Journal, 32, 2672–2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, X., Chang, Q., Pei, H., Sun, X., Qian, X., Tian, C., & Lin, H. (2017). Long non-coding RNA-mRNA correlation analysis reveals the potential role of HOTAIR in pathogenesis of sporadic thoracic aortic aneurysm. European Journal of Vascular and Endovascular Surgery, 54, 303–314.

    Article  CAS  PubMed  Google Scholar 

  • Guttman, M., Amit, I., Garber, M., French, C., Lin, M. F., Feldser, D., Huarte, M., Zuk, O., Carey, B. W., Cassady, J. P., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458, 223–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haemmig, S., & Feinberg, M. W. (2017). Targeting LncRNAs in cardiovascular disease: Options and expeditions. Circulation Research, 120, 620–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haemmig, S., Simion, V., Yang, D., Deng, Y., & Feinberg, M. W. (2017). Long noncoding RNAs in cardiovascular disease, diagnosis, and therapy. Current Opinion in Cardiology, 32, 776–783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, P., & Chang, C. P. (2015). Long non-coding RNA and chromatin remodeling. RNA Biology, 12, 1094–1098.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495, 384–388.

    CAS  PubMed  Google Scholar 

  • Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: A double-edged sword. Nature Reviews. Immunology, 6, 508–519.

    Article  CAS  PubMed  Google Scholar 

  • He, C., Ding, J. W., Li, S., Wu, H., Jiang, Y. R., Yang, W., Teng, L., & Yang, J. (2015). The role of long intergenic noncoding RNA p21 in vascular endothelial cells. DNA and Cell Biology, 34, 677–683.

    Article  CAS  PubMed  Google Scholar 

  • He, C., Yang, W., Yang, J., Ding, J., Li, S., Wu, H., Zhou, F., Jiang, Y., & Teng, L. (2017). Long noncoding RNA MEG3 negatively regulates proliferation and angiogenesis in vascular endothelial cells. DNA and Cell Biology, 36, 475–481.

    Article  CAS  PubMed  Google Scholar 

  • Helgadottir, A., Thorleifsson, G., Magnusson, K. P., Gretarsdottir, S., Steinthorsdottir, V., Manolescu, A., Jones, G. T., Rinkel, G. J., Blankensteijn, J. D., Ronkainen, A., et al. (2008). The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nature Genetics, 40, 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Holdt, L. M., Beutner, F., Scholz, M., Gielen, S., Gabel, G., Bergert, H., Schuler, G., Thiery, J., & Teupser, D. (2010). ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 620–627.

    Article  CAS  PubMed  Google Scholar 

  • Holdt, L. M., Stahringer, A., Sass, K., Pichler, G., Kulak, N. A., Wilfert, W., Kohlmaier, A., Herbst, A., Northoff, B. H., Nicolaou, A., et al. (2016). Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nature Communications, 7, 12429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, G., Gong, A. Y., Wang, Y., Ma, S., Chen, X., Chen, J., Su, C. J., Shibata, A., Strauss-Soukup, J. K., Drescher, K. M., et al. (2016). LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. Journal of Immunology, 196, 2799–2808.

    Article  CAS  Google Scholar 

  • Huang, S., Lu, W., Ge, D., Meng, N., Li, Y., Su, L., Zhang, S., Zhang, Y., Zhao, B., & Miao, J. (2015). A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy, 11, 2172–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C., Hu, Y. W., Zhao, J. J., Ma, X., Zhang, Y., Guo, F. X., Kang, C. M., Lu, J. B., Xiu, J. C., Sha, Y. H., et al. (2016). Long noncoding RNA HOXC-AS1 suppresses Ox-LDL-induced cholesterol accumulation through promoting HOXC6 expression in THP-1 macrophages. DNA and Cell Biology, 35, 722–729.

    Article  CAS  PubMed  Google Scholar 

  • Huang, T. S., Wang, K. C., Quon, S., Nguyen, P., Chang, T. Y., Chen, Z., Li, Y. S., Subramaniam, S., Shyy, J., & Chien, S. (2017). LINC00341 exerts an anti-inflammatory effect on endothelial cells by repressing VCAM1. Physiological Genomics, 49, 339–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Icli, B., & Feinberg, M. W. (2017). MicroRNAs in dysfunctional adipose tissue: Cardiovascular implications. Cardiovascular Research, 113, 1024–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Icli, B., Wara, A. K., Moslehi, J., Sun, X., Plovie, E., Cahill, M., Marchini, J. F., Schissler, A., Padera, R. F., Shi, J., et al. (2013). MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circulation Research, 113, 1231–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Icli, B., Nabzdyk, C. S., Lujan-Hernandez, J., Cahill, M., Auster, M. E., Wara, A. K., Sun, X., Ozdemir, D., Giatsidis, G., Orgill, D. P., et al. (2016). Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. Journal of Molecular and Cellular Cardiology, 91, 151–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, I., Asai, A., Suzuki, S., Kobayashi, M., & Suzuki, F. (2017). M2b macrophage polarization accompanied with reduction of long noncoding RNA GAS5. Biochemical and Biophysical Research Communications, 493, 170–175.

    Article  CAS  PubMed  Google Scholar 

  • Jarinova, O., Stewart, A. F., Roberts, R., Wells, G., Lau, P., Naing, T., Buerki, C., McLean, B. W., Cook, R. C., Parker, J. S., et al. (2009). Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1671–1677.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, C., Fang, X., Jiang, Y., Shen, F., Hu, Z., Li, X., & Huang, X. (2016). TNF-alpha induces vascular endothelial cells apoptosis through overexpressing pregnancy induced noncoding RNA in Kawasaki disease model. The International Journal of Biochemistry & Cell Biology, 72, 118–124.

    Article  CAS  Google Scholar 

  • Kanasty, R., Dorkin, J. R., Vegas, A., & Anderson, D. (2013). Delivery materials for siRNA therapeutics. Nature Materials, 12, 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., Stadler, P. F., Hertel, J., Hackermuller, J., Hofacker, I. L., et al. (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316, 1484–1488.

    Article  CAS  PubMed  Google Scholar 

  • Khvorova, A., & Watts, J. K. (2017). The chemical evolution of oligonucleotide therapies of clinical utility. Nature Biotechnology, 35, 238–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kino, T., Hurt, D. E., Ichijo, T., Nader, N., & Chrousos, G. P. (2010). Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Science Signaling, 3, ra8.

    PubMed  PubMed Central  Google Scholar 

  • Kotake, Y., Nakagawa, T., Kitagawa, K., Suzuki, S., Liu, N., Kitagawa, M., & Xiong, Y. (2011). Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene, 30, 1956–1962.

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk, M., & Emerson, B. M. (2014). p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-kappaB complexes. eLife, 3, e01776.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kugel, J. F., & Goodrich, J. A. (2013). The regulation of mammalian mRNA transcription by lncRNAs: Recent discoveries and current concepts. Epigenomics, 5, 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Leisegang, M. S., Fork, C., Josipovic, I., Richter, F., Preussner, J., Hu, J., Miller, M. J., Epah, J. N., Hofmann, P., Gunther, S., et al. (2017). Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation, 136(1), 65–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung, A., Trac, C., Jin, W., Lanting, L., Akbany, A., Saetrom, P., Schones, D. E., & Natarajan, R. (2013). Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circulation Research, 113, 266–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Chao, T. C., Chang, K. Y., Lin, N., Patil, V. S., Shimizu, C., Head, S. R., Burns, J. C., & Rana, T. M. (2014). The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proceedings of the National Academy of Sciences of the United States of America, 111, 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Li, X., The, E., Wang, L. J., Yuan, T. Y., Wang, S. Y., Feng, J., Wang, J., Liu, Y., Wu, Y. H., et al. (2015a). Low expression of lncRNA-GAS5 is implicated in human primary varicose great saphenous veins. PLoS One, 10, e0120550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, P., Ruan, X., Yang, L., Kiesewetter, K., Zhao, Y., Luo, H., Chen, Y., Gucek, M., Zhu, J., & Cao, H. (2015b). A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metabolism, 21, 455–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Li, J., & Tang, N. (2017a). Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience, 354, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Wang, R., Ma, J. Y., Wang, M., Cui, J., Wu, W. B., Liu, R. M., Zhang, C. X., & Wang, S. M. (2017b). A human long non-coding RNA ALT1 controls the cell cycle of vascular endothelial cells via ACE2 and Cyclin D1 pathway. Cellular Physiology and Biochemistry, 43, 1152–1167.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Wang, M., Mei, Z., Cao, W., Yang, Y., Wang, Y., & Wen, A. (2017c). lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1alpha by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomedicine & Pharmacotherapy, 96, 165–172.

    Article  CAS  Google Scholar 

  • Li, R., Fang, L., Pu, Q., Bu, H., Zhu, P., Chen, Z., Yu, M., Li, X., Weiland, T., Bansal, A., et al. (2018). MEG3-4 is a miRNA decoy that regulates IL-1beta abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Science Signaling, 11, eaao2387.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liao, B., Chen, R., Lin, F., Mai, A., Chen, J., Li, H., Xu, Z., & Dong, S. (2017). Long noncoding RNA HOTTIP promotes endothelial cell proliferation and migration via activation of the Wnt/beta-catenin pathway. Journal of Cellular Biochemistry, 119(3), 2797–2805.

    Article  PubMed  CAS  Google Scholar 

  • Libby, P. (2012). Inflammation in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 2045–2051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby, P. (2013). Mechanisms of acute coronary syndromes and their implications for therapy. The New England Journal of Medicine, 368, 2004–2013.

    Article  CAS  PubMed  Google Scholar 

  • Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473, 317–325.

    Article  CAS  PubMed  Google Scholar 

  • Libby, P., Lichtman, A. H., & Hansson, G. K. (2013a). Immune effector mechanisms implicated in atherosclerosis: From mice to humans. Immunity, 38, 1092–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby, P., Nahrendorf, M., & Swirski, F. K. (2013b). Monocyte heterogeneity in cardiovascular disease. Seminars in Immunopathology, 35, 553–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J. Y., Yao, J., Li, X. M., Song, Y. C., Wang, X. Q., Li, Y. J., Yan, B., & Jiang, Q. (2014). Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death & Disease, 5, e1506.

    Article  CAS  Google Scholar 

  • Liu, C., Li, C. P., Wang, J. J., Shan, K., Liu, X., & Yan, B. (2016). RNCR3 knockdown inhibits diabetes mellitus-induced retinal reactive gliosis. Biochemical and Biophysical Research Communications, 479, 198–203.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Sun, Z., Zhu, J., Xiao, B., Dong, J., & Li, X. (2017). LncRNA-TCONS_00034812 in cell proliferation and apoptosis of pulmonary artery smooth muscle cells and its mechanism. Journal of Cellular Physiology, 18, 558–576.

    Google Scholar 

  • Lu, W., Huang, S. Y., Su, L., Zhao, B. X., & Miao, J. Y. (2016). Long noncoding RNA LOC100129973 suppresses apoptosis by targeting miR-4707-5p and miR-4767 in vascular endothelial cells. Scientific Reports, 6, 21620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, J., Wang, L., Zhang, J., Lin, R., Sun, W., Wu, H., & Xin, S. (2017). Long noncoding RNA H19-derived miR-675 aggravates restenosis by targeting PTEN. Biochemical and Biophysical Research Communications, 497(4), 1154–1161.

    Article  PubMed  CAS  Google Scholar 

  • Ma, S., Ming, Z., Gong, A. Y., Wang, Y., Chen, X., Hu, G., Zhou, R., Shibata, A., Swanson, P. C., & Chen, X. M. (2017). A long noncoding RNA, lincRNA-Tnfaip3, acts as a coregulator of NF-kappaB to modulate inflammatory gene transcription in mouse macrophages. The FASEB Journal, 31, 1215–1225.

    Article  CAS  PubMed  Google Scholar 

  • Michalik, K. M., You, X., Manavski, Y., Doddaballapur, A., Zornig, M., Braun, T., John, D., Ponomareva, Y., Chen, W., Uchida, S., et al. (2014). Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circulation Research, 114, 1389–1397.

    Article  CAS  PubMed  Google Scholar 

  • Ming, G. F., Wu, K., Hu, K., Chen, Y., & Xiao, J. (2016). NAMPT regulates senescence, proliferation, and migration of endothelial progenitor cells through the SIRT1 AS lncRNA/miR-22/SIRT1 pathway. Biochemical and Biophysical Research Communications, 478, 1382–1388.

    Article  CAS  PubMed  Google Scholar 

  • Mullick, A. E., Soldau, K., Kiosses, W. B., Bell, T. A., Tobias, P. S., & Curtiss, L. K. (2008). Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. The Journal of Experimental Medicine, 205, 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak, S., & Herzog, R. W. (2010). Progress and prospects: Immune responses to viral vectors. Gene Therapy, 17, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki, Y., Furuno, M., Kasukawa, T., Adachi, J., Bono, H., Kondo, S., Nikaido, I., Osato, N., Saito, R., Suzuki, H., et al. (2002). Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 420, 563–573.

    Article  PubMed  Google Scholar 

  • Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84, 767–801.

    Article  CAS  PubMed  Google Scholar 

  • Pan, J. X. (2017). LncRNA H19 promotes atherosclerosis by regulating MAPK and NF-kB signaling pathway. European Review for Medical and Pharmacological Sciences, 21, 322–328.

    PubMed  Google Scholar 

  • Peng, Y., Meng, K., Jiang, L., Zhong, Y., Yang, Y., Lan, Y., Zeng, Q., & Cheng, L. (2017). Thymic stromal lymphopoietin-induced HOTAIR activation promotes endothelial cell proliferation and migration in atherosclerosis. Bioscience Reports, 37, BSR20170351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puthanveetil, P., Chen, S., Feng, B., Gautam, A., & Chakrabarti, S. (2015). Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. Journal of Cellular and Molecular Medicine, 19, 1418–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, G. Z., Tian, W., Fu, H. T., Li, C. P., & Liu, B. (2016). Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction. Biochemical and Biophysical Research Communications, 471, 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Reichmuth, A. M., Oberli, M. A., Jeklenec, A., Langer, R., & Blankschtein, D. (2016). mRNA vaccine delivery using lipid nanoparticles. Therapeutic Delivery, 7, 319–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., Fonseca, F., Nicolau, J., Koenig, W., Anker, S. D., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine, 377, 1119–1131.

    Article  CAS  PubMed  Google Scholar 

  • Rinn, J. L., & Chang, H. Y. (2012). Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 81, 145–166.

    Article  CAS  PubMed  Google Scholar 

  • Roux, B. T., Heward, J. A., Donnelly, L. E., Jones, S. W., & Lindsay, M. A. (2017). Catalog of differentially expressed long non-coding RNA following activation of human and mouse innate immune response. Frontiers in Immunology, 8, 1038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sallam, T., Jones, M. C., Gilliland, T., Zhang, L., Wu, X., Eskin, A., Sandhu, J., Casero, D., Vallim, T. Q., Hong, C., et al. (2016). Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature, 534, 124–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallam, T., Sandhu, J., & Tontonoz, P. (2018a). Long noncoding RNA Discovery in cardiovascular disease: Decoding form to function. Circulation Research, 122, 155–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallam, T., Jones, M., Thomas, B. J., Wu, X., Gilliland, T., Qian, K., Eskin, A., Casero, D., Zhang, Z., Sandhu, J., et al. (2018b). Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nature Medicine, 24, 304–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samani, N. J., Erdmann, J., Hall, A. S., Hengstenberg, C., Mangino, M., Mayer, B., Dixon, R. J., Meitinger, T., Braund, P., Wichmann, H. E., et al. (2007). Genomewide association analysis of coronary artery disease. The New England Journal of Medicine, 357, 443–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, K., Jiang, Q., Wang, X. Q., Wang, Y. N., Yang, H., Yao, M. D., Liu, C., Li, X. M., Yao, J., Liu, B., et al. (2016). Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. Cell Death & Disease, 7, e2248.

    Article  CAS  Google Scholar 

  • Shan, K., Li, C. P., Liu, C., Liu, X., & Yan, B. (2017). RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction. Biochemical and Biophysical Research Communications, 482, 777–783.

    Article  CAS  PubMed  Google Scholar 

  • Shete, S., Hosking, F. J., Robertson, L. B., Dobbins, S. E., Sanson, M., Malmer, B., Simon, M., Marie, Y., Boisselier, B., Delattre, J. Y., et al. (2009). Genome-wide association study identifies five susceptibility loci for glioma. Nature Genetics, 41, 899–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, T., Gao, G., & Cao, Y. (2016). Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Disease Markers, 2016, 9085195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simion, V., Haemmig, S., & Feinberg, M. W. (2019). LncRNAs in vascular biology and disease. Vascular Pharmacology. Mar;114:145–156.

    Google Scholar 

  • Song, C. L., Wang, J. P., Xue, X., Liu, N., Zhang, X. H., Zhao, Z., Liu, J. G., Zhang, C. P., Piao, Z. H., Liu, Y., et al. (2017). Effect of circular ANRIL on the inflammatory response of vascular endothelial cells in a rat model of coronary atherosclerosis. Cellular Physiology and Biochemistry, 42, 1202–1212.

    Article  CAS  PubMed  Google Scholar 

  • Spurlock, C. F., Tossberg, J. T., Matlock, B. K., Olsen, N. J., & Aune, T. M. (2014). Methotrexate inhibits NF-kappaB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis & Rhematology, 66, 2947–2957.

    Article  CAS  Google Scholar 

  • Stemme, S., Faber, B., Holm, J., Wiklund, O., Witztum, J. L., & Hansson, G. K. (1995). T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 92, 3893–3897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, X., Belkin, N., & Feinberg, M. W. (2013). Endothelial microRNAs and atherosclerosis. Current Atherosclerosis Reports, 15, 372.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H. J., Hou, B., Wang, X., Zhu, X. X., Li, K. X., & Qiu, L. Y. (2016). Endothelial dysfunction and cardiometabolic diseases: Role of long non-coding RNAs. Life Sciences, 167, 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z., Nie, X., Sun, S., Dong, S., Yuan, C., Li, Y., Xiao, B., Jie, D., & Liu, Y. (2017). Long non-coding RNA MEG3 downregulation triggers human pulmonary artery smooth muscle cell proliferation and migration via the p53 signaling pathway. Cellular Physiology and Biochemistry, 42, 2569–2581.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., Jin, X., Xiang, Y., Chen, Y., Shen, C. X., Zhang, Y. C., & Li, Y. G. (2015). The lncRNA MALAT1 protects the endothelium against ox-LDL-induced dysfunction via upregulating the expression of the miR-22-3p target genes CXCR2 and AKT. FEBS Letters, 589, 3189–3196.

    Article  CAS  PubMed  Google Scholar 

  • Tang, S. S., Cheng, J., Cai, M. Y., Yang, X. L., Liu, X. G., Zheng, B. Y., & Xiong, X. D. (2016). Association of lincRNA-p21 haplotype with coronary artery disease in a Chinese han population. Disease Markers, 2016, 9109743.

    PubMed  PubMed Central  Google Scholar 

  • Tang, R., Zhang, G., Wang, Y. C., Mei, X., & Chen, S. Y. (2017). The long non-coding RNA GAS5 regulates transforming growth factor beta (TGF-beta)-induced smooth muscle cell differentiation via RNA Smad-binding elements. The Journal of Biological Chemistry, 292, 14270–14278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, H., Zhang, J. G., Qin, R. H., Dai, C., Shi, P., Yang, J. J., Deng, Z. Y., & Shi, K. H. (2017). LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway. Toxicology, 386, 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Tontonoz, P., Wu, X., Jones, M., Zhang, Z., Salisbury, D., & Sallam, T. (2017). Long noncoding RNA facilitated gene therapy reduces atherosclerosis in a murine model of familial hypercholesterolemia. Circulation, 136, 776–778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigetti, D., Deleonibus, S., Moretto, P., Bowen, T., Fischer, J. W., Grandoch, M., Oberhuber, A., Love, D. C., Hanover, J. A., Cinquetti, R., et al. (2014). Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. The Journal of Biological Chemistry, 289, 28816–28826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voellenkle, C., Garcia-Manteiga, J. M., Pedrotti, S., Perfetti, A., De Toma, I., Da Silva, D., Maimone, B., Greco, S., Fasanaro, P., Creo, P., et al. (2016). Implication of long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Scientific Reports, 6, 24141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, G., Mathur, R., Hu, X., Liu, Y., Zhang, X., Peng, G., & Lu, X. (2013). Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cellular Signalling, 25, 1086–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Zhang, X., Yuan, Y., Tan, M., Zhang, L., Xue, X., Yan, Y., Han, L., & Xu, Z. (2015). BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro. European Journal of Cardio-Thoracic Surgery, 47, 439–446.

    Article  PubMed  Google Scholar 

  • Wang, G. Q., Wang, Y., Xiong, Y., Chen, X. C., Ma, M. L., Cai, R., Gao, Y., Sun, Y. M., Yang, G. S., & Pang, W. J. (2016a). Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Scientific Reports, 6, 21865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. N., Shan, K., Yao, M. D., Yao, J., Wang, J. J., Li, X., Liu, B., Zhang, Y. Y., Ji, Y., Jiang, Q., et al. (2016b). Long noncoding RNA-GAS5: A novel regulator of hypertension-induced vascular remodeling. Hypertension, 68, 736–748.

    Article  CAS  PubMed  Google Scholar 

  • Williams, G. T., Mourtada-Maarabouni, M., & Farzaneh, F. (2011). A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochemical Society Transactions, 39, 482–486.

    Article  CAS  PubMed  Google Scholar 

  • Willingham, A. T., Orth, A. P., Batalov, S., Peters, E. C., Wen, B. G., Aza-Blanc, P., Hogenesch, J. B., & Schultz, P. G. (2005). A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science, 309, 1570–1573.

    Article  CAS  PubMed  Google Scholar 

  • Wu, G., Cai, J., Han, Y., Chen, J., Huang, Z. P., Chen, C., Cai, Y., Huang, H., Yang, Y., Liu, Y., et al. (2014). LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation, 130, 1452–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, J. W., & Jiang, Y. G. (2017). Long noncoding RNA MALAT1 inhibits apoptosis induced by oxygen-glucose deprivation and reoxygenation in human brain microvascular endothelial cells. Experimental and Therapeutic Medicine, 13, 1225–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, C., Zhang, X., Zhang, H., Ferguson, J. F., Wang, Y., Hinkle, C. C., Li, M., & Reilly, M. P. (2017). De novo RNA sequence assembly during in vivo inflammatory stress reveals hundreds of unannotated lincRNAs in human blood CD14(+) monocytes and in adipose tissue. Physiological Genomics, 49, 287–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, B., Yao, J., Liu, J. Y., Li, X. M., Wang, X. Q., Li, Y. J., Tao, Z. F., Song, Y. C., Chen, Q., & Jiang, Q. (2015). lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circulation Research, 116, 1143–1156.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Li, P., Yang, W., Ruan, X., Kiesewetter, K., Zhu, J., & Cao, H. (2016). Integrative transcriptome analyses of metabolic responses in mice define pivotal LncRNA metabolic regulators. Cell Metabolism, 24, 627–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, Q. P., Xie, Z. W., Wang, K. X., Zhang, P., Han, Y., Qi, Y. X., & Jiang, Z. L. (2017). Profiles of long noncoding RNAs in hypertensive rats: Long noncoding RNA XR007793 regulates cyclic strain-induced proliferation and migration of vascular smooth muscle cells. Journal of Hypertension, 35, 1195–1203.

    Article  CAS  PubMed  Google Scholar 

  • Yap, K. L., Li, S., Munoz-Cabello, A. M., Raguz, S., Zeng, L., Mujtaba, S., Gil, J., Walsh, M. J., & Zhou, M. M. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38, 662–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeggini, E., Weedon, M. N., Lindgren, C. M., Frayling, T. M., Elliott, K. S., Lango, H., Timpson, N. J., Perry, J. R., Rayner, N. W., Freathy, R. M., et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science, 316, 1336–1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Sun, X., Icli, B., & Feinberg, M. W. (2017a). Emerging roles for microRNAs in diabetic microvascular disease: Novel targets for therapy. Endocrine Reviews, 38, 145–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B. Y., Jin, Z., & Zhao, Z. (2017b). Long intergenic noncoding RNA 00305 sponges miR-136 to regulate the hypoxia induced apoptosis of vascular endothelial cells. Biomedicine & Pharmacotherapy, 94, 238–243.

    Article  CAS  Google Scholar 

  • Zhang, Z., Gao, W., Long, Q. Q., Zhang, J., Li, Y. F., Liu, D. C., Yan, J. J., Yang, Z. J., & Wang, L. S. (2017c). Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Scientific Reports, 7, 7491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, D. D., Wang, W. T., Xiong, J., Xie, X. M., Cui, S. S., Zhao, Z. G., Li, M. J., Zhang, Z. Q., Hao, D. L., Zhao, X., et al. (2017d). Long noncoding RNA LINC00305 promotes inflammation by activating the AHRR-NF-kappaB pathway in human monocytes. Scientific Reports, 7, 46204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J., Zhang, W., Lin, M., Wu, W., Jiang, P., Tou, E., Xue, M., Richards, A., Jourd’heuil, D., Asif, A., et al. (2016). MYOSLID Is a novel serum response factor-dependent long noncoding RNA that amplifies the vascular smooth muscle differentiation program. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 2088–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z., Liu, B., Li, B., Song, C., Diao, H., Guo, Z., Li, Z., & Zhang, J. (2017). Inhibition of long noncoding RNA IGF2AS promotes angiogenesis in type 2 diabetes. Biomedicine & Pharmacotherapy, 92, 445–450.

    Article  CAS  Google Scholar 

  • Zou, Z. Q., Xu, J., Li, L., & Han, Y. S. (2015). Down-regulation of SENCR promotes smooth muscle cells proliferation and migration in db/db mice through up-regulation of FoxO1 and TRPC6. Biomedicine & Pharmacotherapy, 74, 35–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (HL115141, HL117994, HL134849, and GM115605 to Mark W. Feinberg), the Arthur K. Watson Charitable Trust (to Mark W. Feinberg), and the Dr. Ralph and Marian Falk Medical Research Trust (to Mark W. Feinberg).

Conflicts of Interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Feinberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simion, V., Haemmig, S., Feinberg, M.W. (2019). Long Non-coding RNAs in Vascular Health and Disease. In: Khalil, A. (eds) Molecular Biology of Long Non-coding RNAs. Springer, Cham. https://doi.org/10.1007/978-3-030-17086-8_7

Download citation

Publish with us

Policies and ethics