Skip to main content

The Role of Long Non-coding RNAs in Melanoma Genesis and Progression

  • Chapter
  • First Online:
Molecular Biology of Long Non-coding RNAs
  • 535 Accesses

Abstract

Skin cancer is the most commonly diagnosed type of all cancers (Gordon 2013; Siegel et al. 2018). Melanoma accounts for only 1% of skin cancer cases; however, it is considered the most lethal type of skin cancer (cancer.org 2018a). Cases of melanoma have increased in the past 30 years, and the lack of treatment has remained a challenge. Melanoma derives its name from the pigmented skin cells known as melanocytes, which are the source of its origin. Melanoma is also referred to as malignant melanoma or cutaneous melanoma (Miller and Mihm 2006). While melanocytes are pigmented, melanoma cells could be both pigmented, appearing black or brown, or unpigmented, pink or white, predominantly due to the ability or inability of the cells to synthesize melanin, respectively. Higher levels of melanin pigment in skin lowers the risk of developing melanoma; however, skin portions that lack pigmentation are still at risk of melanoma (cancer.org 2018b). Consequently to this inverse relationship of melanin and susceptibility of acquiring melanoma; proportion of melanoma patients are higher in Caucasians compared with African or Hispanic (Siegel et al. 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrallo-Gimeno, A., & Nieto, M. A. (2005). The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development (Cambridge, England), 132, 3151–3161.

    Article  CAS  Google Scholar 

  • Bian, D., Shi, W., Shao, Y., Li, P., & Song, G. (2017). Long non-coding RNA GAS5 inhibits tumorigenesis via miR-137 in melanoma. American Journal of Translational Research, 9, 1509–1520.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, B., Zheng, Y., Ma, S., Xing, Q., Wang, X., Yang, B., Yin, G., & Guan, F. (2017). BANCR contributes to the growth and invasion of melanoma by functioning as a competing endogenous RNA to upregulate Notch2 expression by sponging miR204. International Journal of Oncology, 51, 1941–1951.

    Article  CAS  Google Scholar 

  • cancer.org. (2018a). Key statistics for melanoma skin cancer. Atlanta: American Cancer Society.

    Google Scholar 

  • cancer.org. (2018b). What is melanoma skin cancer? Atlanta: American Cancer Society.

    Google Scholar 

  • Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews: MMBR, 75, 50–83.

    Article  CAS  Google Scholar 

  • Chen, L., Yang, H., Xiao, Y., Tang, X., Li, Y., Han, Q., Fu, J., Yang, Y., & Zhu, Y. (2016a). Lentiviral-mediated overexpression of long non-coding RNA GAS5 reduces invasion by mediating MMP2 expression and activity in human melanoma cells. International Journal of Oncology, 48, 1509–1518.

    Article  CAS  Google Scholar 

  • Chen, L., Yang, H., Xiao, Y., Tang, X., Li, Y., Han, Q., Fu, J., Yang, Y., & Zhu, Y. (2016b). LncRNA GAS5 is a critical regulator of metastasis phenotype of melanoma cells and inhibits tumor growth in vivo. OncoTargets and Therapy, 9, 4075–4087.

    Article  CAS  Google Scholar 

  • Chen, X., Dong, H., Liu, S., Yu, L., Yan, D., Yao, X., Sun, W., Han, D., & Gao, G. (2017a). Long noncoding RNA MHENCR promotes melanoma progression via regulating miR-425/489-mediated PI3K-Akt pathway. American Journal of Translational Research, 9, 90–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Liu, S., Zhao, X., Ma, X., Gao, G., Yu, L., Yan, D., Dong, H., & Sun, W. (2017b). Long noncoding RNA ILF3-AS1 promotes cell proliferation, migration, and invasion via negatively regulating miR-200b/a/429 in melanoma. Bioscience Reports, 37, BSR20171031.

    Article  CAS  Google Scholar 

  • Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417, 949–954.

    Article  CAS  Google Scholar 

  • Dunn, J., Watson, M., Aitken, J. F., & Hyde, M. K. (2017). Systematic review of psychosocial outcomes for patients with advanced melanoma. Psycho-Oncology, 26, 1722–1731.

    Article  Google Scholar 

  • Egawa, N., Koshikawa, N., Tomari, T., Nabeshima, K., Isobe, T., & Seiki, M. (2006). Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells. The Journal of Biological Chemistry, 281, 37576–37585.

    Article  CAS  Google Scholar 

  • Flockhart, R. J., Webster, D. E., Qu, K., Mascarenhas, N., Kovalski, J., Kretz, M., & Khavari, P. A. (2012). BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Research, 22, 1006–1014.

    Article  CAS  Google Scholar 

  • Goedert, L., Pereira, C. G., Roszik, J., Placa, J. R., Cardoso, C., Chen, G., Deng, W., Yennu-Nanda, V. G., Silva, W. A., Jr., Davies, M. A., et al. (2016). RMEL3, a novel BRAFV600E-associated long noncoding RNA, is required for MAPK and PI3K signaling in melanoma. Oncotarget, 7, 36711–36718.

    Article  Google Scholar 

  • Gordon, R. (2013). Skin cancer: An overview of epidemiology and risk factors. Seminars in Oncology Nursing, 29, 160–169.

    Article  Google Scholar 

  • Grant, G. D., Brooks, L., 3rd, Zhang, X., Mahoney, J. M., Martyanov, V., Wood, T. A., Sherlock, G., Cheng, C., & Whitfield, M. L. (2013). Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Molecular Biology of the Cell, 24, 3634–3650.

    Article  CAS  Google Scholar 

  • Gropler, M. C., Harris, T. E., Hall, A. M., Wolins, N. E., Gross, R. W., Han, X., Chen, Z., & Finck, B. N. (2009). Lipin 2 is a liver-enriched phosphatidate phosphohydrolase enzyme that is dynamically regulated by fasting and obesity in mice. The Journal of Biological Chemistry, 284, 6763–6772.

    Article  CAS  Google Scholar 

  • Guo, B., Zhang, Q., Wang, H., Chang, P., & Tao, K. (2018). KCNQ1OT1 promotes melanoma growth and metastasis. Aging, 10, 632–644.

    Article  Google Scholar 

  • Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., Tsai, M. C., Hung, T., Argani, P., Rinn, J. L., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071–1076.

    Article  CAS  Google Scholar 

  • Hulstaert, E., Brochez, L., Volders, P. J., Vandesompele, J., & Mestdagh, P. (2017). Long non-coding RNAs in cutaneous melanoma: Clinical perspectives. Oncotarget, 8, 43470–43480.

    Article  Google Scholar 

  • Kawada, K., Sonoshita, M., Sakashita, H., Takabayashi, A., Yamaoka, Y., Manabe, T., Inaba, K., Minato, N., Oshima, M., & Taketo, M. M. (2004). Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Research, 64, 4010–4017.

    Article  CAS  Google Scholar 

  • Khaitan, D., Dinger, M. E., Mazar, J., Crawford, J., Smith, M. A., Mattick, J. S., & Perera, R. J. (2011). The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Research, 71, 3852–3862.

    Article  CAS  Google Scholar 

  • Lee, S., Kopp, F., Chang, T. C., Sataluri, A., Chen, B., Sivakumar, S., Yu, H., Xie, Y., & Mendell, J. T. (2016). Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell, 164, 69–80.

    Article  CAS  Google Scholar 

  • Lee, B., Sahoo, A., Marchica, J., Holzhauser, E., Chen, X., Li, J. L., Seki, T., Govindarajan, S. S., Markey, F. B., Batish, M., et al. (2017). The long noncoding RNA SPRIGHTLY acts as an intranuclear organizing hub for pre-mRNA molecules. Science Advances, 3, e1602505.

    Article  Google Scholar 

  • Lessard, L., Liu, M., Marzese, D. M., Wang, H., Chong, K., Kawas, N., Donovan, N. C., Kiyohara, E., Hsu, S., Nelson, N., et al. (2015). The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching. The Journal of Investigative Dermatology, 135, 2464–2474.

    Article  CAS  Google Scholar 

  • Leucci, E., Vendramin, R., Spinazzi, M., Laurette, P., Fiers, M., Wouters, J., Radaelli, E., Eyckerman, S., Leonelli, C., Vanderheyden, K., et al. (2016a). Melanoma addiction to the long non-coding RNA SAMMSON. Nature, 531, 518–522.

    Article  CAS  Google Scholar 

  • Leucci, E., Coe, E. A., Marine, J. C., & Vance, K. W. (2016b). The emerging role of long non-coding RNAs in cutaneous melanoma. Pigment Cell and Melanoma Research, 29, 619–626.

    Article  CAS  Google Scholar 

  • Li, R., Zhang, L., Jia, L., Duan, Y., Li, Y., Bao, L., & Sha, N. (2014). Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One, 9, e100893.

    Article  Google Scholar 

  • Li, P., Gao, Y., Li, J., Zhou, Y., Yuan, J., Guan, H., & Yao, P. (2018). LncRNA MEG3 repressed malignant melanoma progression via inactivating Wnt signaling pathway. Journal of Cellular Biochemistry, 119(9), 7498–7505.

    Article  CAS  Google Scholar 

  • Liao, Z., Zhao, J., & Yang, Y. (2018). Downregulation of lncRNA H19 inhibits the migration and invasion of melanoma cells by inactivating the NFkappaB and PI3K/Akt signaling pathways. Molecular Medicine Reports, 17, 7313–7318.

    CAS  PubMed  Google Scholar 

  • Long, J., & Pi, X. (2018). lncRNA-MEG3 suppresses the proliferation and invasion of melanoma by regulating CYLD expression mediated by sponging miR-499-5p. BioMed Research International, 2018, 2086564.

    Article  Google Scholar 

  • Long, J., Menggen, Q., Wuren, Q., Shi, Q., & Pi, X. (2018). Long noncoding RNA taurine-upregulated gene1 (TUG1) promotes tumor growth and metastasis through TUG1/Mir-129-5p/astrocyte-elevated gene-1 (AEG-1) axis in malignant melanoma. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 1547–1559.

    Article  Google Scholar 

  • Luan, W., Li, L., Shi, Y., Bu, X., Xia, Y., Wang, J., Djangmah, H. S., Liu, X., You, Y., & Xu, B. (2016). Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22. Oncotarget, 7, 63901–63912.

    PubMed  PubMed Central  Google Scholar 

  • Luan, W., Li, R., Liu, L., Ni, X., Shi, Y., Xia, Y., Wang, J., Lu, F., & Xu, B. (2017). Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote malignant melanoma progression by sponging miR-152-3p. Oncotarget, 8, 85401–85414.

    PubMed  PubMed Central  Google Scholar 

  • Luan, W., Zhou, Z., Ni, X., Xia, Y., Wang, J., Yan, Y., & Xu, B. (2018). Long non-coding RNA H19 promotes glucose metabolism and cell growth in malignant melanoma via miR-106a-5p/E2F3 axis. Journal of Cancer Research and Clinical Oncology, 144, 531–542.

    Article  CAS  Google Scholar 

  • Lv, L., Jia, J. Q., & Chen, J. (2018). The lncRNA CCAT1 upregulates proliferation and invasion in melanoma cells via suppressing miR-33a. Oncology Research, 26, 201–208.

    Article  Google Scholar 

  • Mazar, J., Zhao, W., Khalil, A. M., Lee, B., Shelley, J., Govindarajan, S. S., Yamamoto, F., Ratnam, M., Aftab, M. N., Collins, S., et al. (2014). The functional characterization of long noncoding RNA SPRY4-IT1 in human melanoma cells. Oncotarget, 5, 8959–8969.

    Article  Google Scholar 

  • Miller, A. J., & Mihm, M. C., Jr. (2006). Melanoma. The New England Journal of Medicine, 355, 51–65.

    Article  CAS  Google Scholar 

  • Miller, K. D., Siegel, R. L., Lin, C. C., Mariotto, A. B., Kramer, J. L., Rowland, J. H., Stein, K. D., Alteri, R., & Jemal, A. (2016). Cancer treatment and survivorship statistics, 2016. CA: A Cancer Journal for Clinicians, 66, 271–289.

    Google Scholar 

  • Mou, K., Liu, B., Ding, M., Mu, X., Han, D., Zhou, Y., & Wang, L. J. (2018). lncRNA-ATB functions as a competing endogenous RNA to promote YAP1 by sponging miR-590-5p in malignant melanoma. International Journal of Oncology, 53(3), 1094–1104.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, N., Song, H., Wang, X., Xu, X., Jiang, Y., & Sun, J. (2017). Up-regulation of long noncoding RNA FALEC predicts poor prognosis and promotes melanoma cell proliferation through epigenetically silencing p21. Biomedicine and Pharmacotherapy, 96, 1371–1379.

    Article  CAS  Google Scholar 

  • Pasmant, E., Laurendeau, I., Heron, D., Vidaud, M., Vidaud, D., & Bieche, I. (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: Identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Research, 67, 3963–3969.

    Article  CAS  Google Scholar 

  • Poliseno, L., Haimovic, A., Christos, P. J., Vega, Y. S. d. M. E. C., Shapiro, R., Pavlick, A., Berman, R. S., Darvishian, F., & Osman, I. (2011). Deletion of PTENP1 pseudogene in human melanoma. The Journal of Investigative Dermatology, 131, 2497–2500.

    Article  CAS  Google Scholar 

  • Pullen, T. J., & Rutter, G. A. (2014). Roles of lncRNAs in pancreatic beta cell identity and diabetes susceptibility. Frontiers in Genetics, 5, 193.

    Article  Google Scholar 

  • Richtig, G., Hoeller, C., Kashofer, K., Aigelsreiter, A., Heinemann, A., Kwong, L. N., Pichler, M., & Richtig, E. (2017a). Beyond the BRAF(V)(600E) hotspot: Biology and clinical implications of rare BRAF gene mutations in melanoma patients. The British Journal of Dermatology, 177, 936–944.

    Article  CAS  Google Scholar 

  • Richtig, G., Ehall, B., Richtig, E., Aigelsreiter, A., Gutschner, T., & Pichler, M. (2017b). Function and clinical implications of long non-coding RNAS in melanoma. International Journal of Molecular Sciences, 18, 715.

    Article  Google Scholar 

  • Rubinstein, J. C., Sznol, M., Pavlick, A. C., Ariyan, S., Cheng, E., Bacchiocchi, A., Kluger, H. M., Narayan, D., & Halaban, R. (2010). Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. Journal of Translational Medicine, 8, 67.

    Article  Google Scholar 

  • Sanchez Calle, A., Kawamura, Y., Yamamoto, Y., Takeshita, F., & Ochiya, T. (2018). Emerging roles of long non-coding RNA in cancer. Cancer Science, 109, 2093–2100.

    Article  CAS  Google Scholar 

  • Sandru, A., Voinea, S., Panaitescu, E., & Blidaru, A. (2014). Survival rates of patients with metastatic malignant melanoma. Journal of Medicine and Life, 7, 572–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanlorenzo, M., Vujic, I., Esteve-Puig, R., Lai, K., Vujic, M., Lin, K., Posch, C., Dimon, M., Moy, A., Zekhtser, M., et al. (2018). The lincRNA MIRAT binds to IQGAP1 and modulates the MAPK pathway in NRAS mutant melanoma. Scientific Reports, 8, 10902.

    Article  Google Scholar 

  • Schmidt, K., Joyce, C. E., Buquicchio, F., Brown, A., Ritz, J., Distel, R. J., Yoon, C. H., & Novina, C. D. (2016). The lncRNA SLNCR1 mediates melanoma invasion through a conserved SRA1-like region. Cell Reports, 15, 2025–2037.

    Article  CAS  Google Scholar 

  • Schmitt, A. M., & Chang, H. Y. (2016). Long noncoding RNAs in cancer pathways. Cancer Cell, 29, 452–463.

    Article  CAS  Google Scholar 

  • Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7–30.

    Google Scholar 

  • Singh, D., Srivastava, S. K., Chaudhuri, T. K., & Upadhyay, G. (2015). Multifaceted role of matrix metalloproteinases (MMPs). Frontiers in Molecular Biosciences, 2, 19.

    PubMed  PubMed Central  Google Scholar 

  • Song, X., Sun, Y., & Garen, A. (2005). Roles of PSF protein and VL30 RNA in reversible gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 102, 12189–12193.

    Article  CAS  Google Scholar 

  • Sousa, J. F., Torrieri, R., Silva, R. R., Pereira, C. G., Valente, V., Torrieri, E., Peronni, K. C., Martins, W., Muto, N., Francisco, G., et al. (2010). Novel primate-specific genes, RMEL 1, 2 and 3, with highly restricted expression in melanoma, assessed by new data mining tool. PLoS One, 5, e13510.

    Article  Google Scholar 

  • Sun, Y., Cheng, H., Wang, G., Yu, G., Zhang, D., Wang, Y., Fan, W., & Yang, W. (2017). Deregulation of miR-183 promotes melanoma development via lncRNA MALAT1 regulation and ITGB1 signal activation. Oncotarget, 8, 3509–3518.

    PubMed  Google Scholar 

  • Tang, L., Zhang, W., Su, B., & Yu, B. (2013). Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. BioMed Research International, 2013, 251098.

    PubMed  PubMed Central  Google Scholar 

  • Tian, Y., Zhang, X., Hao, Y., Fang, Z., & He, Y. (2014). Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma. Melanoma Research, 24, 335–341.

    Article  Google Scholar 

  • Uzdensky, A. B., Demyanenko, S. V., & Bibov, M. Y. (2013). Signal transduction in human cutaneous melanoma and target drugs. Current Cancer Drug Targets, 13, 843–866.

    Article  CAS  Google Scholar 

  • Valdearcos, M., Esquinas, E., Meana, C., Pena, L., Gil-de-Gomez, L., Balsinde, J., & Balboa, M. A. (2012). Lipin-2 reduces proinflammatory signaling induced by saturated fatty acids in macrophages. The Journal of Biological Chemistry, 287, 10894–10904.

    Article  CAS  Google Scholar 

  • Wang, Y., Chen, W., Yang, C., Wu, W., Wu, S., Qin, X., & Li, X. (2012). Long non-coding RNA UCA1a(CUDR) promotes proliferation and tumorigenesis of bladder cancer. International Journal of Oncology, 41, 276–284.

    CAS  PubMed  Google Scholar 

  • Wang, Z., Wang, X., Zhou, H., Dan, X., Jiang, L., & Wu, Y. (2018). Long non-coding RNA CASC2 inhibits tumorigenesis via the miR-181a/PLXNC1 axis in melanoma. Acta Biochimica et Biophysica Sinica, 50, 263–272.

    Article  Google Scholar 

  • Wei, Y., Sun, Q., Zhao, L., Wu, J., Chen, X., Wang, Y., Zang, W., & Zhao, G. (2016). LncRNA UCA1-miR-507-FOXM1 axis is involved in cell proliferation, invasion and G0/G1 cell cycle arrest in melanoma. Medical Oncology (Northwood, London, England), 33, 88.

    Article  Google Scholar 

  • Wu, L., Murat, P., Matak-Vinkovic, D., Murrell, A., & Balasubramanian, S. (2013a). Binding interactions between long noncoding RNA HOTAIR and PRC2 proteins. Biochemistry, 52, 9519–9527.

    Article  CAS  Google Scholar 

  • Wu, C. F., Tan, G. H., Ma, C. C., & Li, L. (2013b). The non-coding RNA llme23 drives the malignant property of human melanoma cells. Journal of Genetics and Genomics, 40, 179–188.

    Article  CAS  Google Scholar 

  • Xu, S., Wang, H., Pan, H., Shi, Y., Li, T., Ge, S., Jia, R., Zhang, H., & Fan, X. (2016). ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma. Cancer Letters, 381, 41–48.

    Article  CAS  Google Scholar 

  • Yan, L., Wang, S., Li, Y., Tognetti, L., Tan, R., Zeng, K., Pianigiani, E., Mi, X., Li, H., Fimiani, M., et al. (2018). SNHG5 promotes proliferation and induces apoptosis in melanoma by sponging miR-155. RSC Advances, 8, 6160–6168.

    Article  Google Scholar 

  • Yap, K. L., Li, S., Munoz-Cabello, A. M., Raguz, S., Zeng, L., Mujtaba, S., Gil, J., Walsh, M. J., & Zhou, M. M. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38, 662–674.

    Article  CAS  Google Scholar 

  • Yin, Y., Zhao, B., Li, D., & Yin, G. (2018). Long non-coding RNA CASC15 promotes melanoma progression by epigenetically regulating PDCD4. Cell & Bioscience, 8, 42.

    Article  Google Scholar 

  • Zhang, H., Bai, M., Zeng, A., Si, L., Yu, N., & Wang, X. (2017). LncRNA HOXD-AS1 promotes melanoma cell proliferation and invasion by suppressing RUNX3 expression. American Journal of Cancer Research, 7, 2526–2535.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, W., Mazar, J., Lee, B., Sawada, J., Li, J. L., Shelley, J., Govindarajan, S., Towler, D., Mattick, J. S., Komatsu, M., et al. (2016). The Long noncoding RNA SPRIGHTLY regulates cell proliferation in primary human melanocytes. The Journal of Investigative Dermatology, 136, 819–828.

    Article  CAS  Google Scholar 

  • Zhao, H., Xing, G., Wang, Y., Luo, Z., Liu, G., & Meng, H. (2017). Long noncoding RNA HEIH promotes melanoma cell proliferation, migration and invasion via inhibition of miR-200b/a/429. Bioscience Reports, 37, BSR20170682.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan J. Perera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, P., Perera, R.J. (2019). The Role of Long Non-coding RNAs in Melanoma Genesis and Progression. In: Khalil, A. (eds) Molecular Biology of Long Non-coding RNAs. Springer, Cham. https://doi.org/10.1007/978-3-030-17086-8_5

Download citation

Publish with us

Policies and ethics