Skip to main content

Microencapsulation for Delivery of Probiotic Bacteria

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

In this era of modernization and hectic lifestyles, consumers demand functional foods providing nutrients with physiological and health benefits. Probiotics belong to this in-demand category of functional and nutraceutical foods. Probiotics are selected viable microorganisms, administered in particular amounts, that provide numerous benefits. However, the viability of the microorganisms in harsh thermal processing, storage conditions, and the acid/bile conditions of the gastrointestinal tract is a major concern for the food industry. Microencapsulation technology can provide suitable carriers for probiotics to improve their viability and targeted release. Probiotic encapsulation technology can protect probiotic microorganisms from the hostile conditions of the digestive system. Research is under way to design suitable coating materials and technology for microcapsule preparation. This chapter discusses methods of microencapsulation and improvements in probiotic delivery in the human system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmadi H, Wang Q, Lim LT, Balamurugan S (2018) Encapsulation of Listeria phage A511 by alginate to improve its thermal stability. In: MRJ C, Kropinski AM, Lavigne R (eds) Bacteriophages: methods and protocols, vol 3. Humana Press, New York, pp 89–95

    Chapter  Google Scholar 

  • Alting S, Zhaoping ZH (2015) Optimization of bioethanol production by Saccharomyces cerevisiae microencapsulated on alginate-delignified cellulose material. Int J Pharma Bio Sci 6(2):1259–1270

    Google Scholar 

  • Amine KM, Champagne CP, Salmieri S, Britten M, St-Gelais D, Fustier P, Lacroix M (2014) Effect of palmitoylated alginate microencapsulation on viability of Bifidobacterium longum during freeze-drying. LWT-Food Sci Technol 56(1):111–117

    Article  CAS  Google Scholar 

  • Anekella K, Orsat V (2013) Optimization of microencapsulation of probiotics in raspberry juice by spray drying. Lebenson Wiss Technol 50(1):17–24

    Article  CAS  Google Scholar 

  • Bampi GB, Backes GT, Cansian RL, de Matos FE, Ansolin IM, Poleto BC, Corezzolla LR, Favaro-Trindade CS (2016) Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars. Food Bioprocess Technol 9(8):1422–1428

    Article  CAS  Google Scholar 

  • Basholli-Salihu M, Mueller M, Salar-Behzadi S, Unger FM, Viernstein H (2014) Effect of lyoprotectants on β-glucosidase activity and viability of Bifidobacterium infantis after freeze-drying and storage in milk and low pH juices. Lebenson Wiss Technol 57(1):276–282

    Article  CAS  Google Scholar 

  • Bidoret A, Guihard L, Cauret L, Poncelet D (2017) Production of κ-carrageenan beads by prilling process. Can J Chem Eng 95(4):799–805

    Article  CAS  Google Scholar 

  • Boylston TD, Vinderola CG, Ghoddusi HB, Reinheimer JA (2004) Incorporation of bifidobacteria into cheeses: challenges and rewards. Int Dairy J 14(5):375–387

    Article  CAS  Google Scholar 

  • Brinques GB, Ayub MA (2011) Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J Food Eng 103(2):123–128

    Article  CAS  Google Scholar 

  • Burgain J, Corgneau M, Scher J, Gaiani C (2015) Encapsulation of probiotics in milk protein microcapsules. In: LMC S (ed) Microencapsulation and microspheres for food applications. Academic, London, pp 391–406

    Chapter  Google Scholar 

  • Canizales JR, Rodríguez GR, Avila JA, Saldaña AM, Parrilla EA, Ochoa MA, Aguilar GA (2018) Encapsulation to protect different bioactives to be used as nutraceuticals and food ingredients. In: Mérillon J-M, Ramawat KG (eds) Bioactive molecules in food. Springer, Cham, pp 1–20

    Google Scholar 

  • Casarotti SN, Monteiro DA, Moretti MM, Penna AL (2014) Influence of the combination of probiotic cultures during fermentation and storage of fermented milk. Food Res Int 59:67–75

    Article  CAS  Google Scholar 

  • Chávarri M, Marañón I, Ares R, Ibáñez FC, Marzo F, Del C, Villarán M (2010) Microencapsulation of a probiotic and prebiotic in alginate–chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol 142(1–2):185–189

    Article  PubMed  CAS  Google Scholar 

  • Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162(1):56–67

    Article  CAS  PubMed  Google Scholar 

  • De Araújo Etchepare M, Raddatz GC, Cichoski AJ, Flores ÉM, Barin JS, Zepka LQ, Jacob-Lopes E, Grosso CR, de Menezes CR (2016) Effect of resistant starch (Hi-Maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. J Funct Foods 21:321–329

    Article  CAS  Google Scholar 

  • De Castro-Cislaghi FP, Carina Dos Reis ES, Fritzen-Freire CB, Lorenz JG, Sant’Anna ES (2012) Bifidobacterium Bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. J Food Eng 113(2):186–193

    Article  CAS  Google Scholar 

  • De Lara Pedroso D, Thomazini M, Heinemann RJ, Favaro-Trindade CS (2012) Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int Dairy J 26(2):127–132

    Article  CAS  Google Scholar 

  • De Prisco A, Van Valenberg HJ, Fogliano V, Mauriello G (2017) Microencapsulated starter culture during yoghurt manufacturing, effect on technological features. Food Bioprocess Tech 10(10):1767–1777

    Article  CAS  Google Scholar 

  • Dinakar P, Mistry VV (1994) Growth and viability of Bifidobacterium bifidum in cheddar cheese. J Dairy Sci 77(10):2854–2864

    Article  CAS  PubMed  Google Scholar 

  • Dolly P, Anishaparvin A, Joseph GS, Anandharamakrishnan C (2011) Microencapsulation of Lactobacillus plantarum (MTCC 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions. J Microencapsul 28(6):568–574

    Article  CAS  PubMed  Google Scholar 

  • Eratte D, Dowling K, Barrow CJ, Adhikari B (2017) Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: a review. Trends Food Sci Technol 71:121–131

    Article  CAS  Google Scholar 

  • Fayed B, Abood A, El-Sayed HS, Hashem AM, Mehanna NS (2018) A synbiotic multiparticulate microcapsule for enhancing inulin intestinal release and Bifidobacterium gastro-intestinal survivability. Carbohydr Polym 193:137–143

    Article  CAS  PubMed  Google Scholar 

  • Fazilah NF, Ariff AB, Khayat ME, Rios-Solis L, Halim M (2018) Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. J Funct Foods 48:387–399

    Article  CAS  Google Scholar 

  • Gardiner GE, Bouchier P, O’Sullivan E, Kelly J, Collins JK, Fitzgerald G, Ross RP, Stanton C (2002) A spray-dried culture for probiotic cheddar cheese manufacture. Int Dairy J 12(9):749–756

    Article  CAS  Google Scholar 

  • Gbassi GK, Vandamme T (2012) Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics 4(1):149–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebara C, Chaves KS, Ribeiro MCE, Souza FN, Grosso CR, Gigante ML (2013) Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Res Int 51(2):872–878

    Article  CAS  Google Scholar 

  • Gobetti JP, Türp JC (1998) Fibrosarcoma misdiagnosed as a temporomandibular disorder: a cautionary tale. Oral Surg Oral Med Oral Pathol Oral Radiol 85(4):404–409

    Article  CAS  Google Scholar 

  • Godward G, Kailasapathy K (2003) Viability and survival of free, encapsulated and co-encapsulated probiotic bacteria in ice cream. Milchwissenschaft 58(3–4):161–164

    CAS  Google Scholar 

  • Guignon B, Duquenoy A, Dumoulin ED (2002) Fluid bed encapsulation of particles: principles and practice. Dry Technol 20(2):419–447

    Article  CAS  Google Scholar 

  • Hamaguchi S, Zafar MA, Cammer M, Weiser JN (2018) Capsule prolongs survival of Streptococcus pneumoniae during starvation. Infect Immun. https://doi.org/10.1128/IAI.00802-17

  • Holkem AT, Raddatz GC, Barin JS, Flores ÉM, Muller EI, Codevilla CF, Jacob-Lopes E, Grosso CR, De Menezes CR (2017) Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Sci Technol 76:216–221

    Article  CAS  Google Scholar 

  • Homayouni A, Payahoo L, Azizi A (2012) Effects of probiotics on lipid profile: a review. Am J Food Technol 7(5):251–265

    Article  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV (2015) Technology and potential applications of probiotic encapsulation in fermented milk products. J Food Sci Technol 52(8):4679–4696

    Article  CAS  PubMed  Google Scholar 

  • Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 3(2):39–48

    CAS  PubMed  Google Scholar 

  • Kailasapathy K, Masondole L (2005) Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium lactis and their effect on texture of feta cheese. Aust J Dairy Tech 60(3):252

    Google Scholar 

  • Kataria A, Achi SC, Halami PM (2018) Effect of encapsulation on viability of Bifidobacterium longum CFR815j and physiochemical properties of ice cream. Indian J Microbiol 58(2):248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavitake D, Kandasamy S, Devi PB, Shetty PH (2017) Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods—a review. Food Biosci 21:34–44

    Article  CAS  Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth HC (2006) Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT-and conventionally treated milk during storage. Lebenson Wiss Technol 39(2):177–183

    Article  CAS  Google Scholar 

  • Maleki D, Azizi A, Vaghef E, Balkani S, Homayouni A (2015) Methods of increasing probiotic survival in food and gastrointestinal conditions. La Prensa Medica 101:4. https://doi.org/10.4172/lpma.1000154

    Article  Google Scholar 

  • Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol 27:15–25

    Article  CAS  Google Scholar 

  • Mishra SS, Behera PK, Kar B, Ray RC (2018) Advances in probiotics, prebiotics and nutraceuticals. In: Panda SK, PKS H (eds) Innovations in technologies for fermented food and beverage industries. Springer, Cham, pp 121–141

    Chapter  Google Scholar 

  • Mortazavian A, Razavi SH, Ehsani MR, Sohrabvandi S (2007) Principles and methods of microencapsulation of probiotic microorganisms. Iran J Biotechnol 5(1):1–18

    CAS  Google Scholar 

  • Muthukumarasamy P, Holley RA (2006) Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol 111(2):164–169

    Article  CAS  PubMed  Google Scholar 

  • Mutukumira AN, Ang J, Lee SJ (2015) Microencapsulation of probiotic bacteria. In: Liong MT (ed) Beneficial microorganisms in food and nutraceuticals. Springer, Cham, pp 63–80

    Chapter  Google Scholar 

  • Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Procedia Food Sci 1:1806–1815

    Article  CAS  Google Scholar 

  • Ong YX, Lee LY, Davoodi P, Wang CH (2018) Production of drug-releasing biodegradable microporous scaffold using a two-step micro-encapsulation/supercritical foaming process. J Supercrit Fluids 133:263–269

    Article  CAS  Google Scholar 

  • Ono M, Oka T (1980) The differential actions of cortisol on the accumulation of α-lactalbumin and casein in midpregnant mouse mammary gland in culture. Cell 19(2):473–480

    Article  CAS  PubMed  Google Scholar 

  • Oxman T, Shapira M, Klein R, Avazov N, Rabinowitz B (2001) Oral administration of Lactobacillus induces cardioprotection. J Altern Complement Med 7(4):345–354

    Article  CAS  PubMed  Google Scholar 

  • Ozer B, Uzun YS, Kirmaci HA (2008) Effect of microencapsulation on viability of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12 during Kasar cheese ripening. Int J Dairy Technol 61(3):237–244

    Article  CAS  Google Scholar 

  • Ozer B, Kirmaci HA, Şenel E, Atamer M, Hayaloğlu A (2009) Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. Int Dairy J 19(1):22–29

    Article  CAS  Google Scholar 

  • Panghal A, Janghu S, Virkar K, Gat Y, Kumar V, Chhikara N (2018) Potential non-dairy probiotic products—a healthy approach. Food Biosci 21:80–89

    Article  CAS  Google Scholar 

  • Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Applmicrobiol 100(6):1171–1185

    CAS  Google Scholar 

  • Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein–based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14(6):505–515

    Article  CAS  Google Scholar 

  • Prakash KS, Chavan R, Mishra V (2016) Microencapsulation of probiotics and its applications. In Frontier Discoveries and Innovations in Interdisciplinary Microbiology, 33–44, Springer, New Delhi.

    Chapter  Google Scholar 

  • Prevost H, Divies C (1987) Fresh fermented cheese production with continuous pre fermented milk by a mixed culture of mesophilic lactic streptococci entrapped in calcium alginate. Biotechnol Lett 9(11):789–794

    Article  CAS  Google Scholar 

  • Ray S, Raychaudhuri U, Chakraborty R (2016) An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci 13:76–83

    Article  CAS  Google Scholar 

  • Reed KK, Wickham R (2009) Review of the gastrointestinal tract: from macro to micro. Semin Oncol Nurs 25(1):3–14

    Article  PubMed  Google Scholar 

  • Riaz QU, Masud T (2013) Recent trends and applications of encapsulating materials for probiotic stability. Crit Rev Food Sci Nutr 53(3):231–244

    Article  PubMed  Google Scholar 

  • Rubio R, Jofré A, Martín B, Aymerich T, Garriga M (2014) Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiol 38:303–311

    Article  CAS  PubMed  Google Scholar 

  • Sanders ME, Tompkins T, Heimbach JT, Kolida S (2005) Weight of evidence needed to substantiate a health effect for probiotics and prebiotics. Eur J Nutr 44(5):303–310

    Article  CAS  PubMed  Google Scholar 

  • Semyonov D, Ramon O, Shimoni E (2011) Using ultrasonic vacuum spray dryer to produce highly viable dry probiotics. LWT-Food Sci Technol 44(9):1844–1852

    Article  CAS  Google Scholar 

  • Shi LE, Li ZH, Zhang ZL, Zhang TT, Yu WM, Zhou ML, Tang ZX (2013) Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure. LWT-Food Sci Technol 54(1):147–151

    Article  CAS  Google Scholar 

  • Sobel R, Versic R, Gaonkar AG (2014) Introduction to microencapsulation and controlled delivery in foods. In: Gaonkar AG, Vasisht N, Khare AR, Sobel R (eds) Microencapsulation in the food industry: a practical implementation guide. Academic, Amsterdam, pp 3–12

    Google Scholar 

  • Sodini I, Boquien CY, Corrieu G, Lacroix C (1997) Use of an immobilized cell bioreactor for the continuous inoculation of milk in fresh cheese manufacturing. J Ind Microbiol Biotechnol 18(1):56–61

    Article  CAS  PubMed  Google Scholar 

  • Sohail A, Turner MS, Coombes A, Bostrom T, Bhandari B (2011) Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int J Food Microbiol 145(1):162–168

    Article  CAS  PubMed  Google Scholar 

  • Sohail A, Turner MS, Prabawati EK, Coombes AG, Bhandari B (2012) Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. Int J Food Microbiol 157(2):162–166

    Article  CAS  PubMed  Google Scholar 

  • Solanki HK, Pawar DD, Shah DA, Prajapati VD, Jani GK, Mulla AM, Thakar PM (2013) Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. Biomed Res Int 2013:1–21

    Article  Google Scholar 

  • Speranza B, Petruzzi L, Bevilacqua A, Gallo M, Campaniello D, Sinigaglia M, Corbo MR (2017) Encapsulation of active compounds in fruit and vegetable juice processing: current state and perspectives. J Food Sci 6:1291–1301

    Article  CAS  Google Scholar 

  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62(1–2):47–55

    Article  CAS  PubMed  Google Scholar 

  • Suvarna VC, Boby VU (2005) Probiotics in human health: a current assessment. Curr Sci 11:1744–1748

    Google Scholar 

  • Wang J, Korber DR, Low NH, Nickerson MT (2014) Entrapment, survival and release of Bifidobacterium adolescentis within chickpea protein–based microcapsules. Food Res Int 55:20–27

    Article  CAS  Google Scholar 

  • Weinbreck F, Bodnár I, Marco ML (2010) Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int J Food Microbiol 136(3):364–367

    Article  CAS  PubMed  Google Scholar 

  • Zaeim D, Sarabi-Jamab M, Ghorani B, Kadkhodaee R, Tromp RH (2018) Electrospray-assisted drying of live probiotics in acacia gum microparticles matrix. Carbohydr Polym 183:183–191

    Article  CAS  PubMed  Google Scholar 

  • Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam NJ, Nedovic V (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 3–29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panghal, A. et al. (2019). Microencapsulation for Delivery of Probiotic Bacteria. In: Prasad, R., Kumar, V., Kumar, M., Choudhary, D. (eds) Nanobiotechnology in Bioformulations. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-17061-5_6

Download citation

Publish with us

Policies and ethics