Skip to main content

Advances in Bio-coaters for Nanoparticles and Biodegradable Delivery Systems in Agriculture and Food Industry: Toward a Safer and Eco-friendly Nanotechnology

  • Chapter
  • First Online:
Nanobiotechnology in Bioformulations

Abstract

In the last decades, nanotechnology has attempted to solve important problems of the agricultural and food industry. From the development of nanofertilizers and nanopesticides for the improvement of crop productivity to the use of metallic nanoparticles and nanocarriers for food packaging, the use of nanomaterials has greatly enhanced quality and quantity of our food. However, the mobility of nanoparticles into plants and the food chain has been described as potentially harmful for human and environmental health. This results in the necessity to search for replacements to the current nanomaterials employed on conventional delivery systems for agrochemicals and food packaging. Thus, this chapter addresses the recent advances in novel bio-coatings used in metallic and nonmetallic nanoparticles, engaged in agriculture and food industry, to enhance their biocompatibility as an attempt for a safer and environmentally friendly nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu AS, Oliveira M, de Sá A et al (2015) Antimicrobial nanostructured starch based films for packaging. Carbohydr Polym 129:127–134

    Article  CAS  Google Scholar 

  • Adak T, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. Environ Sci Health B 47:217–225

    Article  CAS  Google Scholar 

  • Agarwal H, Kumar SV, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles-an eco-friendly approach. Resour Technol 3:406–413

    Google Scholar 

  • Anjali CH, Khan SS, Margulis-Goshen K et al (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  CAS  Google Scholar 

  • Bai C, Zhang S, Huang L et al (2015) Starch-based hydrogel loading with carbendazim for controlled-release and water absorption. Carbohydr Polym 125:376–383

    Article  CAS  Google Scholar 

  • Bang SH, Hwang IC, Yu YM et al (2011) Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. J Microencapsul 28:595–604

    Article  CAS  Google Scholar 

  • Carbone M, Tommasa D, Sabbatella G (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28:273–279. https://doi.org/10.1016/j.jksus.2016.05.004

    Article  Google Scholar 

  • Chariou PL, Steinmetz NF (2017) Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic. ACS Nano 11:4719–4473. https://doi.org/10.1021/acsnano.7b00823

    Article  CAS  PubMed  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22. https://doi.org/10.1007/s10311-016-0600-4

    Article  CAS  Google Scholar 

  • Ciolacu D, Oprea AM, Anghel N et al (2012) New cellulose-lignin hydrogels and their application in controlled release of polyphenols. Mater Sci Eng C 32:452–463

    Article  CAS  Google Scholar 

  • Corradini E, de Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515

    Article  CAS  Google Scholar 

  • Corredor E, Testillano P, Coronado M et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. Plant Biol 9:45

    Google Scholar 

  • Costa C, Conte A, Buonocore GG, Del Nobile MA (2011) Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol 148:164–167. https://doi.org/10.1016/j.ijfoodmicro.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Conte A, Buonocore GG et al (2012) Calcium-alginate coating loaded with silver-montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Res Int 48:164–169. https://doi.org/10.1016/j.foodres.2012.03.001

    Article  CAS  Google Scholar 

  • Cotterill JV, Wilkins RM (1996) Controlled release of phenylurea herbicides from a lignin matrix: release kinetics and modification with urea. J Agric Food Chem 44:2908–2912

    Article  CAS  Google Scholar 

  • de Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524

    Article  Google Scholar 

  • de Oliveira JL, Campos EVR, da Silva CMG et al (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63:422–432

    Article  Google Scholar 

  • De Oliveira JL, Campos VR, Pereira AES et al (2018) Zein nanoparticles as eco-friendly carrier systems for botanical repellents aiming sustainable agriculture. J Agric Food Chem 66:1330–1340. https://doi.org/10.1021/acs.jafc.7b05552

    Article  CAS  PubMed  Google Scholar 

  • Dhall RK (2013) Advances in edible coatings for fresh fruits and vegetables: a review. Crit Rev Food Sci Nutr 53:435–450. https://doi.org/10.1080/10408398.2010.541568

    Article  CAS  PubMed  Google Scholar 

  • Dias AM, Hussain A, Marcos AS, Roque AC (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29:142–155

    Article  CAS  Google Scholar 

  • dos Santos Silva, Cocenza DS M, Grillo R, De NFS M et al (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374

    Article  Google Scholar 

  • Duhan JS, Kumar R, Kumar N et al (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23. https://doi.org/10.1016/j.btre.2017.03.002

    Article  Google Scholar 

  • Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22

    Article  CAS  Google Scholar 

  • Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841. https://doi.org/10.1016/j.msec.2013.01.010

    Article  CAS  Google Scholar 

  • Espirito A, Pereira S, Mayara P et al (2017) Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids Surf B Biointerfaces 150:141–152. https://doi.org/10.1016/j.colsurfb.2016.11.027

    Article  CAS  Google Scholar 

  • Fan L, Jin R, Le X et al (2012) Chitosan microspheres for controlled delivery of auxins as agrochemicals. Microchim Acta 176:381–387

    Article  CAS  Google Scholar 

  • FAO (2017) The future of food and agriculture – trends and challenges, Rome

    Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  Google Scholar 

  • Feng BH, Peng LF (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 88:576–582

    Article  CAS  Google Scholar 

  • Feregrino-Perez AA, Magaña-López E, Guzmán C, Esquivel K (2018) A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci Hortic (Amsterdam) 238:126–137. https://doi.org/10.1016/j.scienta.2018.03.060

    Article  Google Scholar 

  • Fernandez A, Picouet P, Lloret E (2010a) Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol 142:222–228

    Article  CAS  Google Scholar 

  • Fernandez A, Picouet P, Lloret E (2010b) Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. J Food Prot 73:2263–2269

    Article  CAS  Google Scholar 

  • Fernández-Fernández M, Sanromán MÁ, Moldes D (2013) Recent developments and applications of immobilized laccase. Biotechnol Adv 31:1808–1825. https://doi.org/10.1016/j.biotechadv.2012.02.013

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Perez MF, Gonzalez-Pradas E, Urena-Amate M (1998) Controlled release of imidacloprid from a lignin matrix: water release kinetics and soil mobility study. J Agric Food Chem 46:3828–3834

    Article  CAS  Google Scholar 

  • Fernández-Pérez M, Villafranca-Sánchez M, Flores-Céspedes F, Daza-Fernández I (2011) Ethylcellulose and lignin as bearer polymers in controlled release formulations of chloridazon. Carbohydr Polym 83:1672–1679

    Article  Google Scholar 

  • Gammariello D, Conte A, Buonocore GG, Del Nobile MA (2011) Bio-based nanocomposite coating to preserve quality of Fior di latte cheese. J Dairy Sci 94:5298–5304

    Article  CAS  Google Scholar 

  • Ganesh R, Karuppusamy I, Dattatraya G et al (2018) A comprehensive review on green nanomaterials using biological systems: recent perception and their future applications. Colloids Surf B Biointerfaces 170:20–35. https://doi.org/10.1016/j.colsurfb.2018.05.045

    Article  CAS  Google Scholar 

  • Grillo R, Pereira AE, Nishisaka CS et al (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    Article  CAS  Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92:83–91

    Article  CAS  Google Scholar 

  • Hasaneen MNA, Abdel-Aziz HMM, El-Bialy D, Omer AM (2014) Preparation of chitosan nanoparticles for loading with NPK fertilizer. Afr J Biotechnol 13:3158–3164. https://doi.org/10.5897/AJB2014.13699

    Article  CAS  Google Scholar 

  • Hidayat R, Fadillah G, Chasanah U et al (2015) Effectiveness of urea nanofertilizer based aminopropyltrimethoxysilane (APTMS)-zeolite as slow release fertilizer system. Afr J Agric Res 10:1785–1788

    Article  CAS  Google Scholar 

  • Hossain K, Monreal M, Sayari K (2008) Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Colloid Surf B 62:42–50

    Article  CAS  Google Scholar 

  • Hussain MR, Devi RR, Maji TK (2012) Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iran Polym J 21:473–479

    Article  CAS  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture food: a nanoforum report. www.nanoforum.org

  • Kanhed P, Birla S, Gaikwas S et al (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15:7–13. https://doi.org/10.1007/s10311-016-0580-4

    Article  CAS  Google Scholar 

  • Kaushik P, Shakil NA, Kumar J et al (2013) Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J Environ Sci Health B 48:677–685

    Article  CAS  Google Scholar 

  • Khalaf HH, Sharoba AM, El-Tanahi HH, Morsy MK (2013) Stability of antimicrobial activity of pullulan edible films incorporated with nanoparticles and essential oils and their impact on Turkey deli meat quality. J Food Dairy Sci 4:557–573

    Google Scholar 

  • Khater M, De la Escosura-Muñiz A, Merkoçi A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86. https://doi.org/10.1016/j.bios.2016.09.091

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Bawendi MG (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum Dots. J Am Chem Soc 125:14652–14653

    Article  CAS  Google Scholar 

  • Koh I, Wang X, Varughese B et al (2006) Magnetic iron oxide nanoparticles for biorecognition: evaluation of surface coverage and activity. J Phys Chem B 110:1553–1558

    Article  CAS  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green, slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:1–7

    Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W et al (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  Google Scholar 

  • Kumar S, Bhanjana G, Sharma A et al (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr Polym 101:1061–1067

    Article  CAS  Google Scholar 

  • Kumar S, Bhanjana G, Sharma A et al (2015) Herbicide loaded carboxymethyl cellulose nanocapsules as potential carrier in agrinanotechnology. Sci Adv Mater 7:1143–1148

    Article  CAS  Google Scholar 

  • Kumar D, Singh S, Singh S et al (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12. https://doi.org/10.1016/j.plaphy.2016.07.030

    Article  CAS  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–an updated report. Saudi Pharm J 24:473–484

    Article  Google Scholar 

  • Lao SB, Zhang ZX, Xu HH, Jiang GB (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 82:1136–1142

    Article  CAS  Google Scholar 

  • Leng Y, Fu L, Ye L et al (2016) Protein-directed synthesis of highly monodispersed, spherical gold nanoparticles and their applications in multidimensional sensing. Sci Rep 6:28900

    Article  CAS  Google Scholar 

  • Li L, Wartchow CA, Danthi SN et al (2004) A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys 58:1215–1227

    Article  CAS  Google Scholar 

  • Li Y, Xu X, Deng C et al (2007) Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis. J Proteome Res 6:3849–3855

    Article  CAS  Google Scholar 

  • Li X, Li W, Jiang Y et al (2011) Effect of nano-ZnO coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int J Food Sci Technol 46:1947–1955

    Article  CAS  Google Scholar 

  • Liu Y, Yan L, Heiden P, Laks P (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79:458–465

    Article  CAS  Google Scholar 

  • Loha KM, Shakil NA, Kumar J et al (2011) Release kinetics of beta-cyfluthrin from its encapsulated formulations in water. J Environ Sci Health B 46:201–206

    Article  CAS  Google Scholar 

  • Mastromatteo M, Conte A, Lucera A et al (2015) Packaging solutions to prolong the shelf life of Fiordilatte cheese: bio-based nanocomposite coating and modified atmosphere packaging. LWT Food Sci Technol 60:230–237. https://doi.org/10.1016/j.lwt.2014.08.013

    Article  CAS  Google Scholar 

  • Mattos BD, Magalhães WLE (2016) Biogenic nanosilica blended by nanofibrillated cellulose as support for slow-release of tebuconazole. J Nanopart Res 18:1–10

    Article  CAS  Google Scholar 

  • Mattos BD, Rojas OJ, Magalh WLE (2017a) Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide. J Clean Prod 142:4206–4213. https://doi.org/10.1016/j.jclepro.2016.11.183

    Article  CAS  Google Scholar 

  • Mattos BD, Tardy BL, Magalhães WLE, Rojas OJ (2017b) Controlled release for crop and wood protection: recent progress toward sustainable and safe nanostructured biocidal systems. J Control Release 262:139–150. https://doi.org/10.1016/j.jconrel.2017.07.025

    Article  CAS  PubMed  Google Scholar 

  • Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014a) Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol Environ Saf 107:77–83

    Article  CAS  Google Scholar 

  • Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014b) Linear-dendritic copolymers/indoxacarb supramolecular systems: biodegradable and efficient nano-pesticides. Environ Sci Process Impacts 16:2380–2389

    Article  CAS  Google Scholar 

  • Meng X, Zhang M, Adhikari B (2014) The effects of ultrasound treatment and nano-zinc oxide coating on the physiological activities of fresh-cut kiwifruit. Food Bioprocess Technol 7:126–132

    Article  CAS  Google Scholar 

  • Merino D, Casalongué C, Alvarez VA (2018) Polysaccharides as eco-nanomaterials for agricultural applications polysaccharides as eco-nanomaterials for agricultural applications. In: Martínez LMT et al (eds) Handbook of ecomaterials. Springer Nature Switzerland AG

    Google Scholar 

  • Morsy MK, Khalaf HH, Sharoba AM et al (2014) Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci 79:M675–M682

    Article  CAS  Google Scholar 

  • Neethirajan S, Ragavan KV, Weng X (2018) Agro-defense: biosensors for food from healthy crops and animals. Trends Food Sci Technol 73:25–44. https://doi.org/10.1016/j.tifs.2017.12.005

    Article  CAS  Google Scholar 

  • Ni B, Liu M, Lu S et al (2011) Environmentally friendly slow release nitrogen fertilizer. J Agric Food Chem 59:10169–10175

    Article  CAS  Google Scholar 

  • O’Connor PM, Ross RP, Hill C, Cotter PD (2015) Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Curr Opin Food Sci 2:51–57

    Article  Google Scholar 

  • Ocsoy I, Tasdemir D, Mazicioglu S et al (2018) Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater Lett 212:45–50. https://doi.org/10.1016/j.matlet.2017.10.068

    Article  CAS  Google Scholar 

  • Pandey RK, Prajapati VK (2018) Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 107:1278–1293. https://doi.org/10.1016/j.ijbiomac.2017.09.110

    Article  CAS  PubMed  Google Scholar 

  • Panea B, Ripoll G, González J et al (2014) Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J Food Eng 123:104–112. https://doi.org/10.1016/j.jfoodeng.2013.09.029

    Article  CAS  Google Scholar 

  • Pankaj, Shakil NA, Kumar J et al (2012) Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. J Environ Sci Health B 47:520–528

    Article  CAS  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Paula HC, Sombra FM, Cavalcante d F, Abreu FO R, de Paula RC (2011) Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater Sci Eng C 31:173–178

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Google Scholar 

  • Prasad R (2016) Advances and Applications through Fungal Nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal Nanotechnology: Applications in Agriculture, Industry, and Medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: An Agriculture paradigm. Springer Nature Singapore Pte Ltd. (ISBN: 978-981-10-4573-8)

    Google Scholar 

  • Prasad R, Kumar V and Kumar M (2017c) Nanotechnology: Food and Environmental Paradigm. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-4678-0)

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363

    PubMed  Google Scholar 

  • Prasad R, Jha A and Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

    Google Scholar 

  • Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials (Basel) 6:738–781. https://doi.org/10.3390/ma6030738

    Article  CAS  Google Scholar 

  • Quiñones JP, García YC, Curiel H, Covas CP (2010) Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydr Polym 80:915–921

    Article  Google Scholar 

  • Ranjan S, Dasgupta N, Lichtfouse E (eds) (2017) Nanoscience in food and agriculture 5. Springer Nature Switzerland AG

    Google Scholar 

  • Ranjitha K, Rao DVS, Shivashankara KS et al (2017) Shelf-life extension and quality retention in fresh-cut carrots coated with pectin. Innov Food Sci Emerg Technol 42:91–100. https://doi.org/10.1016/j.ifset.2017.05.013

    Article  CAS  Google Scholar 

  • Reyes-Ortega F, Delgado A, Schneider E et al (2018) Magnetic nanoparticles coated with a thermosensitive polymer with hyperthermia properties. Polymers (Basel) 10:2–15. https://doi.org/10.3390/polym10010010

    Article  CAS  Google Scholar 

  • Richter AP, Bharti B, Armstrong HB et al (2016) Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties. Langmuir 32:6468–6477

    Article  CAS  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R et al (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  CAS  Google Scholar 

  • Saini P, Gopal M, Kumar R, Srivastava C (2014) Development of pyridalyl nanocapsule suspension for efficient management of tomato fruit and shoot borer (Helicoverpa armigera). J Environ Sci Health B 49:344–351

    Article  CAS  Google Scholar 

  • Sarkar DJ, Kumar J, Shakil NA, Walia S (2012) Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1701–1712

    Article  CAS  Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62:4833–4838

    Article  CAS  Google Scholar 

  • Sharmila RC (2010) Nutrient release pattern of nano-fertilizer formulations (Ph.D.Thesis). Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India,

    Google Scholar 

  • Shaviv A (2000) Advances in controlled-release fertilizers. Adv Agron 71:1–49. https://doi.org/10.1016/S0065-2113(01)71011-5

    Article  Google Scholar 

  • Shen Q, Wang X, Fu D (2008) The amplification effect of functionalized gold nanoparticles on the binding of anticancer drug dacarbazine to DNA and DNA bases. Appl Surf Sci 255:577–580

    Article  CAS  Google Scholar 

  • Silva HD, Cerqueira MA, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867

    Article  CAS  Google Scholar 

  • Subbiah R, Veerapandian M, Yun KS (2010) Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 17:4559–4577

    Article  CAS  Google Scholar 

  • Subramanian K, Manikandan A, Thirunavukkarasu M, Rahale-Sharmila C (2015) Nanofertilizers for balanced crop nutrition. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 69–80

    Google Scholar 

  • Subramanuan K, Tarafdar J (2011) Prospects of nanotechnology in Indian farming. Indian J Agric Sci 81:887–893

    Google Scholar 

  • Sun C, Shu K, Wang W et al (2014) Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int J Pharm 463:108–114

    Article  CAS  Google Scholar 

  • Tao S, Pang R, Chen C et al (2012) Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydr Polym 88:1189–1194

    Article  CAS  Google Scholar 

  • Wilson MA, Tran NH, Milev AS et al (2008) Nanomaterials in soils. Geoderma 146:291–302. https://doi.org/10.1016/j.geoderma.2008.06.004

    Article  CAS  Google Scholar 

  • Wirges CT, Timper J, Fischler M et al (2009) Controlled nucleation of DNA metallization. Angew Chem Int Ed 48:219–223

    Article  CAS  Google Scholar 

  • Xu L, Cao LD, Li FM et al (2014) Utilization of chitosanlactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. J Dispers Sci Technol 35:544–550

    Article  CAS  Google Scholar 

  • Yearla SR, Padmasree K (2016) Exploitation of subabul stem lignin as a matrix in controlled release agrochemical nanoformulations: a case study with herbicide diuron. Environ Sci Pollut Res 23:18085–18098

    Article  CAS  Google Scholar 

  • Yousuf B, Sha O, Kumar A (2018) Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of di ff erent edible coatings: a review. LWT Food Sci Technol 89:198–209. https://doi.org/10.1016/j.lwt.2017.10.051

    Article  CAS  Google Scholar 

  • Zhao J, Wilkins RM (2003) Controlled release of the herbicide, fluometuron, from matrix granules based on fractionated organosolv lignins. J Agric Food Chem 51:4023–4028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Francisco Villarreal-Chiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Delgado, M.M., Martinez-Ledezma, C., Villarreal-Chiu, J.F. (2019). Advances in Bio-coaters for Nanoparticles and Biodegradable Delivery Systems in Agriculture and Food Industry: Toward a Safer and Eco-friendly Nanotechnology. In: Prasad, R., Kumar, V., Kumar, M., Choudhary, D. (eds) Nanobiotechnology in Bioformulations. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-17061-5_14

Download citation

Publish with us

Policies and ethics