Skip to main content

Nitric Oxide (Prong-2)

  • Chapter
  • First Online:
Clinical Autonomic and Mitochondrial Disorders

Abstract

Nitric oxide is a small molecule gas that is primarily produced by epithelial cells throughout the body (e.g., the inner lining of blood vessels, the blood-brain barrier, and barriers in the gut and around reproductive structures). Nitric oxide is known as the universal messenger, made in ubiquitous quantities to signal both defense mechanisms blocking harmful substances from entering the body and the mechanisms that permit helpful substances to enter the body. As such it is involved in many processes, for example, detoxification and the urea cycle, tissue regeneration, blood flow, prevention of atherosclerosis, and regulation of inflammation and oxidation. A large reservoir of nitric oxide is very important to health and wellness, but not too large. As with everything else in life, there still needs to be a proper balance. However, with the typical Western lifestyle, most do not have nearly as large a reservoir as is needed for wellness. Therefore, supplements are strongly recommended.

There are two processes by which supplemental nitric oxide may enter the body. The primary pathway is through the gut by consuming foods that are rich in the precursors to nitric oxide (e.g., L-arginine, L-citrulline, and L-carnitine). However, this pathway is limited. The secondary pathway is not rate limited and is assisted by friendly bacteria in the mouth. The secondary pathway is supplemented by products such as beetroot powder. Granted eating red beets is very healthful and does help, but it is not possible for the average person to eat enough red beets to match the nitric oxide-producing potential of one serving of beetroot powder.

The benefits of beetroot powder are discussed in examples involving heart failure, erectile dysfunction, and the nervous system. Also, there is a “dark side” to nitric oxide. Again, too much is not good either. The dark side of nitric oxide and how it may be avoided will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Telomeres are nucleoprotein complexes located at both ends of eukaryotic chromosomes. These complexes consist of a six-base-pair DNA repeat (TTAGGG) and a growing list of associated proteins [69,70]. Telomeres are important structures involved in cell cycle control and essential for maintaining genome stability and integrity and for an extended proliferative life span in both cultured cells and the whole organism [71,72].

  2. 2.

    L-Arginine is the substrate for the endothelial nitric oxide synthase (eNOS) to generate nitric oxide. The L-arginine paradox refers to the phenomenon that exogenous L-arginine causes nitric oxide-mediated biological effects despite the fact that NOS are saturated with the substrate L-arginine.

  3. 3.

    Small (50–100 nanometer) flask-shaped invaginations of the plasma membrane in many vertebrate cell types, especially in endothelial cells

  4. 4.

    When fatty acids undergo beta oxidation in mitochondria, L-carnitine facilitates transports of fatty acids into the matrix of the mitochondria, and this is called the “L-carnitine fatty acid shuttle,” see Fig. 4.37.

  5. 5.

    Ischemia is an inadequate blood supply to an area of the body. Infarct is an obstruction of a blood vessel, which can cause ischemia. If the blockage is near the heart, it may cause a heart attack. If the heart attack is due to ischemia, it is usually not as severe. If the heart attack is due to an infarct (called a myocardial infarct), it can lead to sudden (cardiac) death. If the ischemia or infarct is near the brain, it is known as a stroke. As with the brain or the heart, ischemia anywhere in the body may cause the death of cells being supplied by the blocked blood vessel, and this can cause disease, including sepsis.

  6. 6.

    True, once Nitric oxide give up an electron, it then becomes a free radical. However, Nitric Oxide has a very short half-life and breaks down quickly, so it little time if any to oxidize anything else.

  7. 7.

    One to two 4 oz. glasses a day for men and one 4 oz. glass a day for women is recommended.

  8. 8.

    CAPON is an nNOS-associated protein which is highly enriched in the brain and has numerous co-localizations with nNOS. CAPON interacts with the nNOS PDZ domain through its C-terminus. CAPON competes with PSD95 for interaction with nNOS, and overexpression of CAPON results in a loss of PSD95/nNOS complexes in transfected cells. CAPON may influence nNOS by regulating its ability to associate with PSD95/NMDA receptor complexes.

  9. 9.

    PIN is a protein inhibitor of nNOS known to dissociate nNOS dimers into monomers.

  10. 10.

    Cerebral vasodilation is the vasodilation of the vessels in the meninges and in the circle of Willis. In the brain itself, there are no blood vessels, and, normally, there is no blood. Blood carries different salts, also known as electrolytes. The introduction of blood into the brain will change the electrical environment of that area of the brain and cause a change in brain patterns and damage cells (which will change brain patterns permanently). The meninges are the protective tissues surrounding the brain. They help to maintain proper pressures within the brain and contain the cerebral spinal fluid which bathes the brain in the nutrients it needs to function. The circle of Willis is the blood vessels supplying “blood to the brain.” In actuality, they bring blood close to the brain so that the nutrients needed may diffuse into the cerebral spinal fluid. Also, the brain has “sensors” that monitor the blood so that the brain “knows” what is needed by the rest of the body, as it works to help maintain homeostasis. Cerebral vasodilation helps to facilitate the delivery of nutrients to the brain and allows the meninges to be more flexible, thereby relieving pressure in the brain.

  11. 11.

    Dynamic PE is an abnormal, “hidden” parasympathetic excess. It is hidden in a sympathetic challenge. Normally with a sympathetic challenge, the parasympathetics first decrease then the sympathetics react, increase. With a dynamic PE, the parasympathetics instead increase abnormally. This forces a (secondary) sympathetic excess (SE), causing abnormal increases in heart rate, blood pressure, and cardiac output, as well as anxiety and exaggerated pain and stress responses. The secondary SE also often masks the (primary) PE. If the SE responses are treated, often the PE is exacerbated. Rather treat the PE [192], then the SE is relieved, and then the results of SE are eventually relieved.

  12. 12.

    The L-arginine-ADMA competition: while there is typically plenty of L-arginine (the rate limiter in the production of nitric oxide) in the cell, ADMA is promoted under conditions of too much nitric oxide (during prolonged illness or prolonged inflammation).

References

  1. Widmer RJ, Lerman A. Endothelial dysfunction and cardiovascular disease. Glob Cardiol Sci Pract. 2014;2014(3):291–308. https://doi.org/10.5339/gcsp.2014.43. eCollection 2014. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–92. Review.

    Article  CAS  PubMed  Google Scholar 

  3. Hadi HA, Carr CS, Al SJ. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183–98. Review.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch. 2010;459(6):807–16. https://doi.org/10.1007/s00424-009-0765-9. Epub 2010 Jan 16. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Snyder SH. Nitric oxide: first in a new class of neurotransmitters. Science. 1992;257(5069):494–6.

    Article  CAS  PubMed  Google Scholar 

  6. Groneberg D, Voussen B, Friebe A. Integrative control of gastrointestinal motility by nitric oxide. Curr Med Chem. 2016;23(24):2715–35. Review.

    Article  CAS  PubMed  Google Scholar 

  7. Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988;157(1):87–94. Erratum in: Biochem Biophys Res Commun 1989 Jan 31;158(2):624.

    Article  CAS  PubMed  Google Scholar 

  8. Hibbs JB Jr. Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res Immunol. 1991;142(7):565–9; discussion 596–8. Review.

    Article  CAS  PubMed  Google Scholar 

  9. Nathan CF, Hibbs JB Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991;3(1):65–70. Review.

    Article  CAS  PubMed  Google Scholar 

  10. Margel D, Mizrahi M, Regev-Shoshani G, Ko M, Moshe M, Ozalvo R, Shavit-Grievink L, Baniel J, Kedar D, Yossepowitch O, Lifshitz D, Nadu A, Greenberg D, Av-Gay Y. Nitric oxide charged catheters as a potential strategy for prevention of hospital acquired infections. PLoS One. 2017;12(4):e0174443. https://doi.org/10.1371/journal.pone.0174443. eCollection 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsukiyama Y, Ito T, Nagaoka K, Eguchi E, Ogino K. Effects of exercise training on nitric oxide, blood pressure and antioxidant enzymes. J Clin Biochem Nutr. 2017;60(3):180–6. https://doi.org/10.3164/jcbn.16-108. Epub 2017 Apr 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Faraci FM. Reactive oxygen species: influence on cerebral vascular tone. J Appl Physiol (1985). 2006;100(2):739–43. Review.

    Article  CAS  Google Scholar 

  13. Faraci FM, Brian JE Jr. Nitric oxide and the cerebral circulation. Stroke. 1994;25(3):692–703.

    Article  CAS  PubMed  Google Scholar 

  14. Musicki B, Lagoda G, Goetz T, La Favor JD, Burnett AL. Transnitrosylation: a factor in nitric oxide-mediated penile erection. J Sex Med. 2016;13(5):808–14. https://doi.org/10.1016/j.jsxm.2016.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Elder JA, Braver Y. Female sexual dysfunction. http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/womens-health/female-sexual-dysfunction/

  16. Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2001;1504(1):46–57. Review.

    Article  CAS  PubMed  Google Scholar 

  17. Damodaran VB, Leszczak V, Wold KA, Lantvit SM, Popat KC, Reynolds MM. Anti-thrombogenic properties of a nitric oxide-releasing dextran derivative: evaluation of platelet activation and whole blood clotting kinetics. RSC Adv. 2013;3(46). https://doi.org/10.1039/C3RA45521A.

    Article  CAS  Google Scholar 

  18. Lefer AM. Nitric oxide: nature’s naturally occurring leukocyte inhibitor. Circulation. 1997;95(3):553–4. Review.

    Article  CAS  PubMed  Google Scholar 

  19. Lefer AM, Lefer DJ. Nitric oxide. II. Nitric oxide protects in intestinal inflammation. Am J Phys. 1999;276(3 Pt 1):G572–5. Review.

    CAS  Google Scholar 

  20. Ashraf MZ, Srivastava S. Oxidized phospholipids: introduction and biological significance. In: Lipoproteins. Gerhard Kostner; 2012. https://doi.org/10.5772/50461.

    Google Scholar 

  21. Predonzani A, Calì B, Agnellini AH, Molon B. Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med. 2015;5(2):64–76.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Korhonen R, Korpela R, Saxelin M, Mäki M, Kankaanranta H, Moilanen E. Induction of nitric oxide synthesis by probiotic lactobacillus rhamnosus GG in J774 macrophages and human T84 intestinal epithelial cells. Inflammation. 2001;25(4):223–32.

    Article  CAS  PubMed  Google Scholar 

  23. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, Zamboni N, Sallusto F, Lanzavecchia A. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016;167(3):829–842.e13. https://doi.org/10.1016/j.cell.2016.09.031. Epub 2016 Oct 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Niedbala W, Cai B, Liew FY. Role of nitric oxide in the regulation of T cell functions. Ann Rheum Dis. 2006;65(Suppl 3):iii37–40. Review.

    PubMed  PubMed Central  Google Scholar 

  25. Niedbala W, Besnard AG, Jiang HR, Alves-Filho JC, Fukada SY, Nascimento D, Mitani A, Pushparaj P, Alqahtani MH, Liew FY. Nitric oxide-induced regulatory T cells inhibit Th17 but not Th1 cell differentiation and function. J Immunol. 2013;191(1):164–70. https://doi.org/10.4049/jimmunol.1202580. Epub 2013 May 29.

    Article  CAS  PubMed  Google Scholar 

  26. Winkler MS, Kluge S, Holzmann M, Moritz E, Robbe L, Bauer A, Zahrte C, Priefler M, Schwedhelm E, Böger RH, Goetz AE, Nierhaus A, Zoellner C. Markers of nitric oxide are associated with sepsis severity: an observational study. Crit Care. 2017;21(1):189. https://doi.org/10.1186/s13054-017-1782-2.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Predonzani A, Calì B, Agnellini AH, Molon B. Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med. 2015;5(2):64–76. https://doi.org/10.5493/wjem.v5.i2.64. eCollection 2015 May 20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Predonzani A, Calì B, Agnellini AH, Molon B. Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med. 2015;5(2):64–76.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ying L, Hofseth LJ. An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res. 2007;67:1407–10.

    Article  CAS  PubMed  Google Scholar 

  30. Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V. Nitric oxide and cancer: a review. World J Surg Oncol. 2013;11:118. https://doi.org/10.1186/1477-7819-11-118. Review.

    Article  PubMed  Google Scholar 

  31. Li LM, Kibourn RG, Adams J, Filder IJ. Role of NO in lysis of tumor cells by cytokine activated endothelial cells. Cancer Res. 1991;51:2531–5.

    CAS  PubMed  Google Scholar 

  32. Shang ZJ, Li JR. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in oral squamous cell carcinoma: its correlation with angiogenesis and disease progression. J Oral Pathol Med. 2005;4:134–9.

    Article  Google Scholar 

  33. Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol. 2005;15:277–89.

    Article  CAS  PubMed  Google Scholar 

  34. Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol. 2015;6:311–7. https://doi.org/10.1016/j.redox.2015.07.015. Epub 2015 Jul 31. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol. 2015;6:311–7. https://doi.org/10.1016/j.redox.2015.07.015. Epub 2015 Jul 31. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reveneau S, Arnould L, Jolimoy G, Hilpert S, Lejeune P, Saint-Giorgio V, Belichard C, Jeannin JF. Nitric oxide synthase in human breast cancer is associated with tumor grade, proliferation rate, and expression of progesterone receptor. Lab Investig. 1999;79:1215–25.

    CAS  PubMed  Google Scholar 

  37. Seabra AB, de Lima R, Calderón M. Nitric oxide releasing nanomaterials for cancer treatment: current status and perspectives. Curr Top Med Chem. 2015;15(4):298–308. Review.

    Article  CAS  PubMed  Google Scholar 

  38. Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Review. Biochim Biophys Acta Bioenerg. 2001;1504(1):46–57.

    Article  CAS  Google Scholar 

  39. Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Review. Biochim Biophys Acta Bioenerg. 2001;1504(1):46–57.

    Article  CAS  Google Scholar 

  40. Chakraborty S, Ain R. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem. 2017;292(16):6600–20. https://doi.org/10.1074/jbc.M116.742627. Epub 2017 Feb 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Siegel C, McCullough LD. NAD+ depletion or PAR polymer formation: which plays the role of executioner in ischemic cell death? Acta Physiol (Oxf). 2011;203(1):225–34. https://doi.org/10.1111/j.1748-1716.2010.02229.x.

    Article  CAS  Google Scholar 

  42. Siegel C, McCullough LD. NAD+ depletion or PAR polymer formation: which plays the role of executioner in ischemic cell death? Acta Physiol (Oxf). 2011;203(1):225–34. https://doi.org/10.1111/j.1748-1716.2010.02229.x.

    Article  CAS  Google Scholar 

  43. Morbidelli L, Chang CH, Douglas JG, Granger HJ, Ledda F, Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Phys. 1996;270(1 Pt 2):H411–5.

    CAS  Google Scholar 

  44. Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, Bicknell R. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest. 1997;99(11):2625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Uhlmann S, Friedrichs U, Eichler W, Hoffmann S, Wiedemann P. Direct measurement of VEGF-induced nitric oxide production by choroidal endothelial cells. Microvasc Res. 2001;62(2):179–89.

    Article  CAS  PubMed  Google Scholar 

  46. Kimura H, Esumi H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol. 2003;50(1):49–59. Review.

    CAS  PubMed  Google Scholar 

  47. Zhang HH, Chen JC, Sheibani L, Lechuga TJ, Chen DB. Pregnancy augments VEGF-stimulated in vitro angiogenesis and vasodilator (NO and H2S) production in human uterine artery endothelial cells. J Clin Endocrinol Metab. 2017. https://doi.org/10.1210/jc.2017-00437.

    Article  Google Scholar 

  48. Estrada C, Murillo-Carretero M. Nitric oxide and adult neurogenesis in health and disease. Neuroscientist. 2005;11(4):294.

    Article  CAS  PubMed  Google Scholar 

  49. Wimalawansa SJ. Nitric oxide and bone. Ann N Y Acad Sci. 2010;1192:391–403. https://doi.org/10.1111/j.1749-6632.2009.05230.x. Review.

    Article  CAS  PubMed  Google Scholar 

  50. Yu Q, Li T, Li J, Zhong L, Mao X. Nitricoxidesynthase in male urological and andrologic functions. Nitric oxide synthase – simple enzyme-complex roles. 113–36. http://www.intechopen.com/books/nitric-oxide-synthase-simpleenzyme-complex-roles

  51. Emanuele MA, Wezeman F, Emanuele NV. Alcohol’s effect on female reproductive function. Alcohol Res Health. 2002;26(4):274–81. National Institute on Alcohol Abuse and Alcoholism (NIAAA). June, 2003. https://pubs.niaaa.nih.gov/publications/arh26-4/274-281.htm

  52. Ferrier DP. Biochemistry. 6th ed. Philadelphia: Lippincott, Williams & Williams, a Wolters Kluwer Business; 2014.

    Google Scholar 

  53. Erez A. Arginosuccinate acidura: from monogenic to a complex disorder. Genet Med. 2013;15:251–7. https://doi.org/10.1038/gim.2012.166. Epub 2013 Jan 10.

    Article  CAS  PubMed  Google Scholar 

  54. Kelm M. Nitric oxide metabolism and breakdown. BBA. 1999;1411:273–89. https://doi.org/10.1016/S0005-2728(99)00020-1.

    Article  CAS  PubMed  Google Scholar 

  55. Tiso M, Schechter AN. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS One. 2015;10(3):e0119712. https://doi.org/10.1371/journal.one.0119712.

  56. Gad MZ. Anti-aging effects of L-arginine. J Adv Res. 2010;1:169–77. Review.

    Article  Google Scholar 

  57. Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, Lima JA, Crouse JR, Herrington DM. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(6):502–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Huang A, Silver AE, Shvenke E, Schopfer DW, Jahangir E, Titas MA, Shpilman A, Menzoian JO, Watkins MT, Raffetto JD, Gibbons G, Woodson J, Shaw PM, Dhadly M, Eberhardt RT, Keaney JF Jr, Gokce N, Vita JA. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler Thromb Vasc Biol. 2007;27(10):2113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anderson T, Charbonneau F, Title LM, Buithieu J, Rose MS, Conradson H, Hildebrand K, Fung M, Verma S, Lonn EM. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the firefighters and their endothelium (FATE) study. Circulation. 2011;123(2):163–9.

    Article  PubMed  Google Scholar 

  60. Lind L, Berglund L, Larsson A, Sundström J. Endothelial function in resistance and conduit arteries and 5-year risk of cardiovascular disease. Circulation. 2011;123(14):1545–51.

    Article  PubMed  Google Scholar 

  61. Gorren AC, Mayer B. Tetrahydrobiopterin in nitric oxide synthesis: a novel biological role for pteridines. Curr Drug Metab. 2002;3(2):133–57. Review.

    Article  CAS  PubMed  Google Scholar 

  62. Michel T. NO way to relax: the complexities of coupling nitric oxide synthase pathways in the heart. Circulation. 2010;121(4):484–6. https://doi.org/10.1161/CIR.0b013e3181d1e24e. Epub 2010 Jan 18.

    Article  PubMed  Google Scholar 

  63. Channon KM. Tetrahydrobiopterin: a vascular redox target to improve endothelial function. Curr Vasc Pharmacol. 2012;10(6):705–8. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang Y, Janssens SP, Wingler K, Schmidt HH, Moens AL. Modulating endothelial nitric oxide synthase: a new cardiovascular therapeutic strategy. Am J Physiol Heart Circ Physiol. 2011;301(3):H634–46. https://doi.org/10.1152/ajpheart.01315.2010. Epub 2011 May 27. Review. Erratum in: Am J Physiol Heart Circ Physiol. 2012 Jul 15;303(2):H241.

    Article  PubMed  Google Scholar 

  65. Menzel D, Haller H, Wilhelm M, et al. L-arginine and B vitamins improve endothelial function in subjects with mild to moderate blood pressure elevation. Eur J Nutr. 2018;57(2):557–68. https://doi.org/10.1007/s00394-016-1342-6 (Springer Berlin Heidelberg).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Stuehr DJ. Enzymes of the L-arginine to nitric oxide pathway. J Nutr. 2004;134(10 Suppl):2748S–51S; discussion 2765S–2767S. Review

    Article  CAS  PubMed  Google Scholar 

  67. Lai WK, Kan MY. Homocysteine-induced endothelial dysfunction. Ann Nutr Metab. 2015;67:1–12. https://doi.org/10.1159/000437098.

    Article  CAS  PubMed  Google Scholar 

  68. Scalera F, Bode-Böger SM. Nitric oxide–asymmetric dimethylarginine system in endothelial cell senescence. In: Ignarro LJ, editor. Nitric oxide biology and pathobiology. 2nd ed. San Diego: Elsevier; 2010.

    Google Scholar 

  69. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988;85(18):6622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Blackburn EH. Telomere states and cell fates. Nature. 2000;408:53–6.

    Article  CAS  PubMed  Google Scholar 

  71. Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106:661–73.

    Article  CAS  PubMed  Google Scholar 

  72. Blasco MA. Mammalian telomeres and telomerase: why they matter for cancer and aging. Eur J Cell Biol. 2003;82:441–6.

    Article  CAS  PubMed  Google Scholar 

  73. Bode-Böger SM, Martens-Lobenhoffer J, Täger M, Schröder H, Scalera F. Aspirin reduces endothelial cell senescence. Biochem Biophys Res Commun. 2005;334:1226–32.

    Article  PubMed  CAS  Google Scholar 

  74. Scalera F, Martens-Lobenhoffer J, Bukowska A, Lendeckel U, Täger M, Bode-Böger SM. Effect of telmisartan on nitric oxide-asymmetrical dimethylarginine system. Role of angiotensin II type 1 receptor and peroxisome proliferator activated receptor γ signaling during endothelial aging. Hypertension. 2008;51:696–703.

    Article  CAS  PubMed  Google Scholar 

  75. Jin ZG. Where is endothelial nitric oxide synthase more critical: plasma membrane or Golgi? Arterioscler Thromb Vasc Biol. 2006;26(5):959–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Petruson K, Stalfors J, Jacobsson KE, Ny L, Petruson B. Nitric oxide production in the sphenoidal sinus by the inducible and constitutive isozymes of nitric oxide synthase. Rhinology. 2005;43(1):18–23.

    CAS  PubMed  Google Scholar 

  77. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2003;284(1):R1–12.

    Article  CAS  PubMed  Google Scholar 

  78. Ostrom RS, Bundey RA, Insel PA. Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes. J Biol Chem. 2004;279(19):19846–53.

    Article  CAS  PubMed  Google Scholar 

  79. Minshall RD, Sessa WC, Stan RV, Anderson RG, Malik AB. Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol. 2003;285(6):L1179–83.

    Article  CAS  PubMed  Google Scholar 

  80. Ho FM, Lin WW, Chen BC, Chao CM, Yang CR, Lin LY, Lai CC, Liu SH, Liau CS. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH(2)-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cell Signal. 2006;18(3):391–9. Epub 2005 Jun 20.

    Article  CAS  PubMed  Google Scholar 

  81. Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol. 2003;285(3):C499–508.

    Article  CAS  PubMed  Google Scholar 

  82. Goubareva I, Gkaliagkousi E, Shah A, Queen L, Ritter J, Ferro A. Age decreases nitric oxide synthesis and responsiveness in human platelets and increases formation of monocyte-platelet aggregates. Cardiovasc Res. 2007;75(4):793–802. Epub 2007 May 24.

    Article  CAS  PubMed  Google Scholar 

  83. Eggebeen J, Kim-Shapiro DB, Haykowsky M, Morgan TM, Basu S, Brubaker P, Rejeski J, Kitzman DW. One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2016;4(6):428–37. https://doi.org/10.1016/j.jchf.2015.12.013. Epub 2016 Feb 10.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shaltout HA, Eggebeen J, Marsh AP, Brubaker PH, Laurienti PJ, Burdette JH, Basu S, Morgan A, Dos Santos PC, Norris JL, Morgan TM, Miller GD, Rejeski WJ, Hawfield AT, Diz DI, Becton JT, Kim-Shapiro DB, Kitzman DW. Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction. Nitric Oxide. 2017;69:78–90. https://doi.org/10.1016/j.niox.2017.05.005. Epub 2017 May 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Woessner MN, McIlvenna LC, Ortiz de Zevallos J, Neil C, Allen JD. Dietary nitrate supplementation in cardiovascular health: an ergogenic aid or exercise therapeutic? Am J Physiol Heart Circ Physiol. 2017:ajpheart004142017. https://doi.org/10.1152/ajpheart.00414.2017.

    Article  PubMed  CAS  Google Scholar 

  86. Notay K, Incognito AV, Millar PJ. Acute beetroot juice supplementation on sympathetic nerve activity: a randomized, double-blind, placebo-controlled proof-of-concept study. Am J Physiol Heart Circ Physiol. 2017;313(1):H59–65. https://doi.org/10.1152/ajpheart.00163.2017. Epub 2017 May 5.

    Article  PubMed  Google Scholar 

  87. Ashor AW, Lara J, Siervo M. Medium-term effects of dietary nitrate supplementation on systolic and diastolic blood pressure in adults: a systematic review and meta-analysis. J Hypertens. 2017;35(7):1353–9. https://doi.org/10.1097/HJH.0000000000001305.

    Article  CAS  PubMed  Google Scholar 

  88. Clements WT, Lee SR, Bloomer RJ. Nitrate ingestion: a review of the health and physical performance effects. Nutrients. 2014;6(11):5224–64. https://doi.org/10.3390/nu6115224. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Siervo M, Lara J, Ogbonmwan I, Mathers JC. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J Nutr. 2013;143(6):818–26. https://doi.org/10.3945/jn.112.170233. Epub 2013 Apr 17. Review.

    Article  CAS  PubMed  Google Scholar 

  90. Coles LT, Clifton PM. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: a randomized, placebo-controlled trial. Nutr J. 2012;11:106. https://doi.org/10.1186/1475-2891-11-106.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hobbs DA, Goulding MG, Nguyen A, Malaver T, Walker CF, George TW, Methven L, Lovegrove JA. Acute ingestion of beetroot bread increases endothelium-independent vasodilation and lowers diastolic blood pressure in healthy men: a randomized controlled trial. J Nutr. 2013;143(9):1399–405. https://doi.org/10.3945/jn.113.175778. Epub 2013 Jul 24.

    Article  CAS  PubMed  Google Scholar 

  92. Jajja A, Sutyarjoko A, Lara J, Rennie K, Brandt K, Qadir O, Siervo M. Beetroot supplementation lowers daily systolic blood pressure in older, overweight subjects. Nutr Res. 2014;34(10):868–75. https://doi.org/10.1016/j.nutres.2014.09.007. Epub 2014 Sep 28.

    Article  CAS  PubMed  Google Scholar 

  93. Wong RH, Garg ML, Wood LG, Howe PR. Antihypertensive potential of combined extracts of olive leaf, green coffee bean and beetroot: a randomized, double-blind, placebo-controlled crossover trial. Nutrients. 2014;6(11):4881–94. https://doi.org/10.3390/nu6114881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Clements WT, Lee SR, Bloomer RJ. Nitrate ingestion: a review of the health and physical performance effects. Nutrients. 2014;6(11):5224–64. https://doi.org/10.3390/nu6115224. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lara J, Ashor AW, Oggioni C, Ahluwalia A, Mathers JC, Siervo M. Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysis. Eur J Nutr. 2016;55(2):451–9. https://doi.org/10.1007/s00394-015-0872-7. Epub 2015 Mar 13. Review.

    Article  CAS  PubMed  Google Scholar 

  96. Lee JS, Stebbins CL, Jung E, Nho H, Kim JK, Chang MJ, Choi HM. Effects of chronic dietary nitrate supplementation on the hemodynamic response to dynamic exercise. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R459–66. https://doi.org/10.1152/ajpregu.00099.2015. Epub 2015 Jun 17.

    Article  CAS  PubMed  Google Scholar 

  97. Clifford T, Howatson G, West DJ, Stevenson EJ. The potential benefits of red beetroot supplementation in health and disease. Nutrients. 2015;7(4):2801–22. https://doi.org/10.3390/nu7042801. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bondonno CP, Liu AH, Croft KD, Ward NC, Shinde S, Moodley Y, Lundberg JO, Puddey IB, Woodman RJ, Hodgson JM. Absence of an effect of high nitrate intake from beetroot juice on blood pressure in treated hypertensive individuals: a randomized controlled trial. Am J Clin Nutr. 2015;102(2):368–75. https://doi.org/10.3945/ajcn.114.101188. Epub 2015 Jul 1.

    Article  CAS  PubMed  Google Scholar 

  99. Kelly J, Vanhatalo A, Wilkerson DP, Wylie LJ, Jones AM. Effects of nitrate on the power-duration relationship for severe-intensity exercise. Med Sci Sports Exerc. 2013;45(9):1798–806. https://doi.org/10.1249/MSS.0b013e31828e885c.

    Article  CAS  PubMed  Google Scholar 

  100. Muggeridge DJ, Howe CC, Spendiff O, Pedlar C, James PE, Easton C. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int J Sport Nutr Exerc Metab. 2013;23(5):498–506. Epub 2013 Apr 9. Erratum in: Int J Sport Nutr Exerc Metab. 2013 Dec;23 (6):642.

    Article  CAS  PubMed  Google Scholar 

  101. Hoon MW, Jones AM, Johnson NA, Blackwell JR, Broad EM, Lundy B, Rice AJ, Burke LM. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2,000-m rowing performance in trained athletes. Int J Sports Physiol Perform. 2014;9(4):615–20. https://doi.org/10.1123/ijspp.2013-0207. Epub 2013 Sep 30.

    Article  PubMed  Google Scholar 

  102. Breese BC, McNarry MA, Marwood S, Blackwell JR, Bailey SJ, Jones AM. Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate. Am J Physiol Regul Integr Comp Physiol. 2013;305(12):R1441–50. https://doi.org/10.1152/ajpregu.00295.2013. Epub 2013 Oct 2.

    Article  CAS  PubMed  Google Scholar 

  103. Lowery RP, Joy JM, Dudeck JE, Oliveira de Souza E, McCleary SA, Wells S, Wildman R, Wilson JM. Effects of 8 weeks of Xpand® 2X pre workout supplementation on skeletal muscle hypertrophy, lean body mass, and strength in resistance trained males. J Int Soc Sports Nutr. 2013;10(1):44. https://doi.org/10.1186/1550-2783-10-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thompson KG, Turner L, Prichard J, Dodd F, Kennedy DO, Haskell C, Blackwell JR, Jones AM. Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir Physiol Neurobiol. 2014;193:11–20. https://doi.org/10.1016/j.resp.2013.12.015. Epub 2013 Dec 31.

    Article  CAS  PubMed  Google Scholar 

  105. Pinna M, Roberto S, Milia R, Marongiu E, Olla S, Loi A, Migliaccio GM, Padulo J, Orlandi C, Tocco F, Concu A, Crisafulli A. Effect of beetroot juice supplementation on aerobic response during swimming. Nutrients. 2014;6(2):605–15. https://doi.org/10.3390/nu6020605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Flanagan SD, Looney DP, Miller MJ, DuPont WH, Pryor L, Creighton BC, Sterczala AJ, Szivak TK, Hooper DR, Maresh CM, Volek JS, Ellis LA, Kraemer WJ. The effects of nitrate-rich supplementation on neuromuscular efficiency during heavy resistance exercise. J Am Coll Nutr. 2016;35(2):100–7. https://doi.org/10.1080/07315724.2015.1081572. Epub 2016 Feb 17.

    Article  CAS  PubMed  Google Scholar 

  107. Petrie M, Rejeski WJ, Basu S, Laurienti PJ, Marsh AP, Norris JL, Kim-Shapiro DB, Burdette JH. Beet root juice: an ergogenic aid for exercise and the aging brain. J Gerontol A Biol Sci Med Sci. 2016. https://doi.org/10.1093/gerona/glw219. [Epub ahead of print].

  108. Domínguez R, Cuenca E, Maté-Muñoz JL, García-Fernández P, Serra-Paya N, Estevan MC, Herreros PV, Garnacho-Castaño MV. Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients. 2017;9(1). pii: E43. https://doi.org/10.3390/nu9010043. Review.

    Article  PubMed Central  CAS  Google Scholar 

  109. Montenegro CF, Kwong DA, Minow ZA, Davis BA, Lozada CF, Casazza GA. Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl Physiol Nutr Metab. 2017;42(2):166–72. https://doi.org/10.1139/apnm-2016-0452. Epub 2016 Oct 14.

    Article  CAS  PubMed  Google Scholar 

  110. Vanhatalo A, Jones AM, Blackwell JR, Winyard PG, Fulford J. Dietary nitrate accelerates postexercise muscle metabolic recovery and O2 delivery in hypoxia. J Appl Physiol (1985). 2014;117(12):1460–70. https://doi.org/10.1152/japplphysiol.00096.2014. Epub 2014 Oct 9.

    Article  CAS  Google Scholar 

  111. Kim JK, Moore DJ, Maurer DG, Kim-Shapiro DB, Basu S, Flanagan MP, Skulas-Ray AC, Kris-Etherton P, Proctor DN. Acute dietary nitrate supplementation does not augment submaximal forearm exercise hyperemia in healthy young men. Appl Physiol Nutr Metab. 2015;40(2):122–8. https://doi.org/10.1139/apnm-2014-0228. Epub 2014 Oct 15.

    Article  CAS  PubMed  Google Scholar 

  112. MacLeod KE, Nugent SF, Barr SI, Koehle MS, Sporer BC, MacInnis MJ. Acute beetroot juice supplementation does not improve cycling performance in normoxia or moderate hypoxia. Int J Sport Nutr Exerc Metab. 2015;25(4):359–66. https://doi.org/10.1123/ijsnem.2014-0129. Epub 2015 Mar 26.

    Article  CAS  PubMed  Google Scholar 

  113. Arnold JT, Oliver SJ, Lewis-Jones TM, Wylie LJ, Macdonald JH. Beetroot juice does not enhance altitude running performance in well-trained athletes. Appl Physiol Nutr Metab. 2015;40(6):590–5. https://doi.org/10.1139/apnm-2014-0470. Epub 2015 Feb 4.

    Article  CAS  PubMed  Google Scholar 

  114. Flueck JL, Bogdanova A, Mettler S, Perret C. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise. Appl Physiol Nutr Metab. 2016;41(4):421–9. https://doi.org/10.1139/apnm-2015-0458. Epub 2015 Dec 23.

    Article  CAS  PubMed  Google Scholar 

  115. Chirinos JA, Akers SR, Trieu L, Ischiropoulos H, Doulias PT, Tariq A, Vassim I, Koppula MR, Syed AA, Soto-Calderon H, Townsend RR, Cappola TP, Margulies KB, Zamani P. Heart failure, left ventricular remodeling, and circulating nitric oxide metabolites. J Am Heart Assoc. 2016;5(10). pii: e004133. Erratum in: J Am Heart Assoc. 2017 Feb 14;6(2).

    Google Scholar 

  116. Zamani P, Tan V, Soto-Calderon H, Beraun M, Brandimarto JA, Trieu L, Varakantam S, Doulias PT, Townsend RR, Chittams J, Margulies KB, Cappola TP, Poole DC, Ischiropoulos H, Chirinos JA. Pharmacokinetics and pharmacodynamics of inorganic nitrate in heart failure with preserved ejection fraction. Circ Res. 2017;120(7):1151–61. https://doi.org/10.1161/CIRCRESAHA.116.309832. Epub 2016 Dec 7.

    Article  CAS  PubMed  Google Scholar 

  117. Jacob T, Ascher E, Vorsanger M, Hingorani A, Kallakuri S, Yorkovich W, Schuzter R. Decreased production of nitric oxide by peripheral blood mononuclear cells of patients with peripheral vascular disease. Vasc Endovasc Surg. 2005;39(2):175–81.

    Article  Google Scholar 

  118. Tapiero H, Mathé G, Couvreur P, Tew KD. L-Arginine. Biomed Pharmacother. 2002;56(9):439–45.

    Article  CAS  PubMed  Google Scholar 

  119. Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME. Renal arginine synthesis: studies in vitro and in vivo. Am J Phys. 1990;259(3 Pt1):E437–42.

    CAS  Google Scholar 

  120. Watford M. The urea cycle: a two-compartment system. Essays Biochem. 1991;26:49–58.

    CAS  PubMed  Google Scholar 

  121. Fritz JH. Arginine cools the inflamed gut. Infect Immun. 2013;81(10):3500–2. https://doi.org/10.1128/IAI.00789-13. Epub 2013 Jul 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Patel VB, Preedy VR, Rajendram R, editors. L-arginine in clinical nutrition. Cham: Humana Press, Springer International Publishing; 2017.

    Google Scholar 

  123. Pahlavani N, Jafari M, Sadeghi O, Rezaei M, Rasad H, Rahdar HA, Entezari MH. L-arginine supplementation and risk factors of cardiovascular diseases in healthy men: a double-blind randomized clinical trial. Version 2. F1000Res. 2014 [revised 2017 Jun 1];3:306. https://doi.org/10.12688/f1000research.5877.2. eCollection 2014.

    Article  PubMed Central  Google Scholar 

  124. Clifford T, Howatson G, West DJ, Stevenson EJ. The potential benefits of red beetroot supplementation in health and disease. Nutrients. 2015;7(4):2801–22. https://doi.org/10.3390/nu7042801. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Flanagan SD, Looney DP, Miller MJ, DuPont WH, Pryor L, Creighton BC, Sterczala AJ, Szivak TK, Hooper DR, Maresh CM, Volek JS, Ellis LA, Kraemer WJ. The effects of nitrate-rich supplementation on neuromuscular efficiency during heavy resistance exercise. J Am Coll Nutr. 2016;35(2):100–7. https://doi.org/10.1080/07315724.2015.1081572. Epub 2016 Feb 17.

    Article  CAS  PubMed  Google Scholar 

  126. Domínguez R, Cuenca E, Maté-Muñoz JL, García-Fernández P, Serra-Paya N, Estevan MC, Herreros PV, Garnacho-Castaño MV. Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients. 2017;9(1). pii: E43. https://doi.org/10.3390/nu9010043. Review.

    Article  PubMed Central  CAS  Google Scholar 

  127. Bondonno CP, Liu AH, Croft KD, Ward NC, Shinde S, Moodley Y, Lundberg JO, Puddey IB, Woodman RJ, Hodgson JM. Absence of an effect of high nitrate intake from beetroot juice on blood pressure in treated hypertensive individuals: a randomized controlled trial. Am J Clin Nutr. 2015;102(2):368–75. https://doi.org/10.3945/ajcn.114.101188. Epub 2015 Jul 1.

    Article  CAS  PubMed  Google Scholar 

  128. Arnold JT, Oliver SJ, Lewis-Jones TM, Wylie LJ, Macdonald JH. Beetroot juice does not enhance altitude running performance in well-trained athletes. Appl Physiol Nutr Metab. 2015;40(6):590–5. https://doi.org/10.1139/apnm-2014-0470. Epub 2015 Feb 4.

    Article  CAS  PubMed  Google Scholar 

  129. Boger RH, Bode Boger SM. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol. 2001;41:79–99.

    Article  CAS  PubMed  Google Scholar 

  130. Kamada Y, Nagaretani H, Tamura S, Ohama T, Maruyama T, Hiraoka H, et al. Vascular endothelial dysfunction resulting from L-arginine deficiency in a patient with lysinuric protein intolerance. J Clin Invest. 2001;108(5):717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Boger RH, Ron ES. L-arginine improves vascular function by overcoming deleterious effects of ADMA, a novel cardiovascular risk factor. Altern Med Rev. 2005;10(1):14–23.

    PubMed  Google Scholar 

  132. Holt LE Jr, Albanese AA. Observations on amino acid deficiencies in man. Trans Assoc Am Phys. 1944;58:143–56.

    CAS  Google Scholar 

  133. Tanimura J. Studies on arginine in human semen. II. The effects of medication with L-arginine-HCL on male infertility. Bull Osaka Med Sch. 1967;13(2):84–9.

    CAS  PubMed  Google Scholar 

  134. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature. 2000;408(6809):239–47.

    Article  CAS  PubMed  Google Scholar 

  135. Schwentker A, Vodovotz Y, Weller R, Billiar TR. Nitric oxide and wound repair: role of cytokines? Nitric Oxide. 2002;7(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  136. Seifter E, Rettura G, Barbul A, Levenson SM. Arginine: an essential amino acid for injured rats. Surgery. 1978;84(2):224–30.

    CAS  PubMed  Google Scholar 

  137. Kirk SJ, Hurson M, Regan MC, Holt DR, Wasserkrug HL, Barbul A. Arginine stimulates wound healing and immune function in elderly human beings. Surgery. 1993;114(2):155–9.

    CAS  PubMed  Google Scholar 

  138. Arbss MA, Ferrando JM, Vidal J, Quiles MT, Huguet P, Castells J, et al. Early effects of exogenous arginine after the implantation of prosthetic material into the rat abdominal wall. Life Sci. 2000;67(20):2493–512.

    Article  CAS  PubMed  Google Scholar 

  139. Albina JE, Mills CD, Henry WL Jr, Caldwell MD. Temporal expression of different pathways of L-arginine metabolism in healing wounds. J Immunol. 1990;144(10):3877–80.

    CAS  PubMed  Google Scholar 

  140. Shi HP, Efron DT, Most D, Tantry US, Barbul A. Supplemental dietary arginine enhances wound healing in normal but not inducible nitric oxide synthase knockout mice. Surgery. 2000;128(2):374–8.

    Article  CAS  PubMed  Google Scholar 

  141. Angele MK, Nitsch SM, Hatz RA, Angele P, Hernandez Richter T, Wichmann MW, et al. L-arginine: a unique amino acid for improving depressed wound immune function following hemorrhage. Eur Surg Res. 2002;34(1–2):53–60.

    Article  CAS  PubMed  Google Scholar 

  142. Chen X, Li Y, Cai X, Xu W, Lu S, Shi J. Dose–effect of dietary L-arginine supplementation on burn wound healing in rats. Chin Med J. 1999;112(9):828–31.

    CAS  PubMed  Google Scholar 

  143. Yu YM, Ryan CM, Castillo L, Lu XM, Beaumier L, Tompkins RG, et al. Arginine and ornithine kinetics in severely burned patients: increased rate of arginine disposal. Am J Physiol Endocrinol Metab. 2001;280(3):E509–17.

    Article  CAS  PubMed  Google Scholar 

  144. Pieper GM, Siebeneich W, Dondlinger LA. Short-term oral administration of L-arginine reverses defective endothelium-dependent relaxation and cGMP generation in diabetes. Eur J Pharmacol. 1996;317(2–3):317–20.

    Article  CAS  PubMed  Google Scholar 

  145. Abbasi F, Asagmi T, Cooke JP, Lamendola C, McLaughlin T, Reaven GM, et al. Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus. Am J Cardiol. 2001;88(10):1201–3.

    Article  CAS  PubMed  Google Scholar 

  146. Giugliano D, Marfella R, Verrazzo G, Acampora R, Nappo F, Ziccardi P, et al. L-arginine for testing endothelium-dependent vascular functions in health and disease. Am J Phys. 1997;273(3 Pt 1):E606–12.

    CAS  Google Scholar 

  147. Wascher TC, Graier WF, Dittrich P, Hussain MA, Bahadori B, Wallner S, et al. Effects of low-dose L-arginine on insulin-mediated vasodilatation and insulin sensitivity. Eur J Clin Investig. 1997;27(8):690–5.

    Article  CAS  Google Scholar 

  148. Lubec B, Hayn M, Kitzmuller E, Vierhapper H, Lubec G. L-arginine reduces lipid peroxidation in patients with diabetes mellitus. Free Radic Biol Med. 1997;22(1–2):355–7.

    Article  CAS  PubMed  Google Scholar 

  149. Piatti PM, Monti LD, Valsecchi G, Magni F, Setola E, Marchesi F, et al. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care. 2001;24(5):875–80.

    Article  CAS  PubMed  Google Scholar 

  150. Bohme GA, Bon C, Stutzmann JM, Doble A, Blanchard JC. Possible involvement of nitric oxide in long-term potentiation. Eur J Pharmacol. 1991;199(3):379–81.

    Article  CAS  PubMed  Google Scholar 

  151. Moncada S, Higgs A. The L-arginine–nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12. [73] Campbell BI, La Bounty PM, Roberts M. The ergogenic potential of arginine. J Int Soc Sports Nutr 2004;1(2):35–8.

    Article  CAS  PubMed  Google Scholar 

  152. Campbell BI, La Bounty PM, Roberts M. The ergogenic potential of arginine. J Int Soc Sports Nutr. 2004;1(2):35–8.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Fossel ET. Improvement of temperature and flow in feet of subjects with diabetes with use of a transdermal preparation of L-arginine: a pilot study. Diabetes Care. 2004;27(1):284–5.

    Article  PubMed  Google Scholar 

  154. Klahr S. Can L-arginine manipulation reduce renal disease? Semin Nephrol. 1999;19(3):304–9.

    CAS  PubMed  Google Scholar 

  155. Park KG, Hayes PD, Garlick PJ, Sewell H, Eremin O. Stimulation of lymphocyte natural cytotoxicity by L-arginine. Lancet. 1991;337(8742):645–6.

    Article  CAS  PubMed  Google Scholar 

  156. Gupta V, Gupta A, Saggu S, Divekar HM, Grover SK, Kumar R. Antistress and adaptogenic activity of L-arginine supplementation. Evid Based Complement Alternat Med. 2005;2(1):93–7.

    Article  PubMed  Google Scholar 

  157. Collier SR, Casey DP, Kanaley JA. Growth hormone responses to varying doses of oral arginine. Growth Hormon IGF Res. 2005;15(2):136–9.

    Article  CAS  Google Scholar 

  158. Boger RH, Bode Boger SM. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol. 2001;41:79–99.

    Article  CAS  PubMed  Google Scholar 

  159. Boger RH, Bode Boger SM, Mugge A, Kienke S, Brandes R, Dwenger A, et al. Supplementation of hypercholesterolaemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production. Atherosclerosis. 1995;117(2):273–84.

    Article  CAS  PubMed  Google Scholar 

  160. Grasemann H, Kurtz F, Ratjen F. Inhaled L-arginine improves exhaled nitric oxide and pulmonary function in patients with cystic fibrosis. Am J Respir Crit Care Med. 2006;174(2):208–12.

    Article  CAS  PubMed  Google Scholar 

  161. Frostegard J, Haegerstrand A, Gidlund M, Nilsson J. Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis. 1991;90:119–26.

    Article  CAS  PubMed  Google Scholar 

  162. Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990;344:254–7.

    Article  CAS  PubMed  Google Scholar 

  163. Yla-Herttuala S, Lipton BA, Rosenfeld ME, Sarkioja T, Yoshimura T, Leonard EJ, Witztum JL, Steinberg D. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991;88:5252–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Catapano AL, Maggi FM, Tragni E. Low density lipoprotein oxidation, antioxidants, and atherosclerosis. Curr Opin Cardiol. 2000;15:355–63.

    Article  CAS  PubMed  Google Scholar 

  165. Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A. 1987;84:2995–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37, 837a–837d.

    Article  PubMed  CAS  Google Scholar 

  167. Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem. 1999;274:32512–9.

    Article  CAS  PubMed  Google Scholar 

  168. Cominacini L, Rigoni A, Pasini AF, Garbin U, Davoli A, Campagnola M, Pastorino AM, Lo Cascio V, Sawamura T. The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J Biol Chem. 2001;276:13750–5.

    Article  CAS  PubMed  Google Scholar 

  169. Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther. 2002;95:89–100.

    Article  CAS  PubMed  Google Scholar 

  170. Kataoka H, Kume N, Miyamoto S, Minami M, Moriwaki H, Murase T, Sawamura T, Masaki T, Hashimoto N, Kita T. Expression of lectinlike oxidized lowdensity lipoprotein receptor-1 in human atherosclerotic lesions. Circulation. 1999;99:3110–3117. Role of Oxidized LDL in Atherosclerosis. https://doi.org/10.5772/5937573.

  171. Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation. 2000;101:2889–95.

    Article  CAS  PubMed  Google Scholar 

  172. Li D, Chen H, Romeo F, Sawamura T, Saldeen T, Mehta JL. Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1. J Pharmacol Exp Ther. 2002;302:601–5.

    Article  CAS  PubMed  Google Scholar 

  173. Cominacini L, Fratta Pasini A, Garbin U, Pastorino A, Rigoni A, Nava C, Davoli A, Lo Cascio V, Sawamura T. The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells. J Am Coll Cardiol. 2003;41:499–507.

    Article  CAS  PubMed  Google Scholar 

  174. Valente AJ, Irimpen AM, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med. 2014;70C:117–28.

    Article  CAS  Google Scholar 

  175. Leiva E, Wehinger S, Guzmán L, Orrego R. Role of oxidized LDL in atherosclerosis. In: Kumar SA, editor. Hypercholesterolemia; 2015. https://doi.org/10.5772/59375.

    Chapter  Google Scholar 

  176. Rosen P, Nawroth PP, King G, Möller W, Tritschler H-J, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev. 2001;17(3):189–209. https://doi.org/10.1002/dmrr.196.

    Article  CAS  PubMed  Google Scholar 

  177. Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009;6(6):399–409. https://doi.org/10.1038/nrcardio.2009.55. Epub 2009 Apr 28. Review.

    Article  CAS  PubMed  Google Scholar 

  178. Shindel AW, Kishore S, Lue TF. Drugs designed to improve endothelial function: effects on erectile dysfunction. Curr Pharm Des. 2008;14(35):3758–67. Review.

    Article  CAS  PubMed  Google Scholar 

  179. Enzlin P, Mathieu C, Vanderschueren D, Demyttenaere K. Diabetes mellitus and female sexuality: a review of 25 years’ research. Diabet Med. 1998;15(10):809–15.

    Article  CAS  PubMed  Google Scholar 

  180. Ryan JJ, Fang JC. Taking NO for an answer: exploring the therapeutic potential of nitrite in HFpEF. Circ Res. 2016;119(7):782–4. https://doi.org/10.1161/CIRCRESAHA.116.309623.

    Article  CAS  PubMed  Google Scholar 

  181. Zuo L, Chuang CC, Hemmelgarn BT, Best TM. Heart failure with preserved ejection fraction: defining the function of ROS and NO. J Appl Physiol. 2015;119(8):944–51. https://doi.org/10.1152/japplphysiol.01149.2014.

    Article  CAS  PubMed  Google Scholar 

  182. Gevaert AB, Shakeri H, Leloup AJ, Van Hove CE, De Meyer GRY, Vrints CJ, Lemmens K, Van Craenenbroeck EM. Endothelial senescence contributes to heart failure with preserved ejection fraction in an aging mouse model. Circ Heart Fail. 2017;10(6). pii: e003806. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003806.

  183. Octavia Y, Kararigas G, de Boer M, Chrifi I, Kietadisorn R, Swinnen M, Duimel H, Verheyen FK, Brandt MM, Fliegner D, Cheng C, Janssens S, Duncker DJ, Moens AL. Folic acid reduces doxorubicin-induced cardiomyopathy by modulating endothelial nitric oxide synthase. J Cell Mol Med. 2017. https://doi.org/10.1111/jcmm.13231. [Epub ahead of print].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lahera V. Nitric oxide: a possible new biomarker in heart failure? Relationship with pulmonary hypertension secondary to left heart failure. Clin Investig Arterioscler. 2017;29(3):127–8. https://doi.org/10.1016/j.arteri.2017.04.001.

    Article  PubMed  Google Scholar 

  185. Kraehling JR, Sessa WC. Contemporary approaches to modulating the nitric oxide-cGMP pathway in cardiovascular disease. Circ Res. 2017;120(7):1174–82. https://doi.org/10.1161/CIRCRESAHA.117.303776. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ritchie RH, Drummond GR, Sobey CG, De Silva TM, Kemp-Harper BK. The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res. 2017;116:57–69. https://doi.org/10.1016/j.phrs.2016.12.017. Epub 2016 Dec 15.

    Article  CAS  PubMed  Google Scholar 

  187. Sharma NM, Patel KP. Post-translational regulation of neuronal nitric oxide synthase: implications for sympathoexcitatory states. Expert Opin Ther Targets. 2017;21(1):11–22. Epub 2016 Dec 2. Review.

    Article  CAS  PubMed  Google Scholar 

  188. Zhang YH. Neuronal nitric oxide synthase in hypertension – an update. Clin Hypertens. 2016;22:20. eCollection 2016. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Simon MA, Vanderpool RR, Nouraie M, Bachman TN, White PM, Sugahara M, Gorcsan J 3rd, Parsley EL, Gladwin MT. Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction. JCI Insight. 2016;1(18):e89620.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Forte M, Conti V, Damato A, Ambrosio M, Puca AA, Sciarretta S, Frati G, Vecchione C, Carrizzo A. Targeting nitric oxide with natural derived compounds as a therapeutic strategy in vascular diseases. Oxidative Med Cell Longev. 2016;2016:7364138. https://doi.org/10.1155/2016/7364138. Epub 2016 Aug 29. Review.

    Article  CAS  Google Scholar 

  191. Shabeeh H, Seddon M, Brett S, Melikian N, Casadei B, Shah AM, Chowienczyk P. Sympathetic activation increases NO release from eNOS but neither eNOS nor nNOS play an essential role in exercise hyperemia in the human forearm. Am J Physiol Heart Circ Physiol. 2013;304(9):H1225–30. https://doi.org/10.1152/ajpheart.00783.2012. Epub 2013 Feb 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Colombo J, Arora RR, DePace NL, Vinik AI. Clinical autonomic dysfunction: measurement, indications, therapies, and outcomes. New York: Springer Science + Business Media; 2014.

    Google Scholar 

  193. Zhang YH, Jin CZ, Jang JH, Wang Y. Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J Physiol. 2014;592(15):3189–200. https://doi.org/10.1113/jphysiol.2013.270306. Epub 2014 Apr 22. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mohan RM, Choate JK, Golding S, Herring N, Casadei B, Paterson DJ. Peripheral pre-synaptic pathway reduces the heart rate response to sympathetic activation following exercise training: role of NO. Cardiovasc Res. 2000;47:90–8.

    Article  CAS  PubMed  Google Scholar 

  195. Choate JK, Danson EJ, Morris JF, Paterson DJ. Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice. Am J Physiol Heart Circ Physiol. 2001;281:H2310–7.

    Article  CAS  PubMed  Google Scholar 

  196. Danson EJ, Choate JK, Paterson DJ. Cardiac nitric oxide: emerging role for nNOS in regulating physiological function. Pharmacol Ther. 2005;106:57–74.

    Article  CAS  PubMed  Google Scholar 

  197. Han G, Ma H, Chintala R, Miyake K, Fulton DJ, Barman SA, White RE. Nongenomic, endothelium-independent effects of estrogen on human coronary smooth muscle are mediated by type I (neuronal) NOS and PI3-kinase-Akt signalling. Am J Physiol Heart Circ Physiol. 2007;293:H314–21.

    Article  CAS  PubMed  Google Scholar 

  198. Seddon M, Melikian N, Dworakowski R, Shabeeh H, Jiang B, Byrne J, Casadei B, Chowienczyk P, Shah AM. Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation. 2009;119:2656–62.

    Article  CAS  PubMed  Google Scholar 

  199. Wang Y, Golledge J. Neuronal nitric oxide synthase and sympathetic nerve activity in neurovascular and metabolic systems. Curr Neurovasc Res. 2013;10(1):81–9. Review.

    Article  PubMed  Google Scholar 

  200. Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.

    Article  PubMed  Google Scholar 

  201. Pyner S. The paraventricular nucleus and heart failure. Exp Physiol. 2014;99(2):332–9. https://doi.org/10.1113/expphysiol.2013.072678. Epub 2013 Dec 6. Review.

    Article  CAS  PubMed  Google Scholar 

  202. Rocha BML, Cunha GJL, Menezes Falcão LF. The burden of iron deficiency in heart failure: therapeutic approach. J Am Coll Cardiol. 2018;71(7):782–93.

    Article  CAS  PubMed  Google Scholar 

  203. Hu PJ, Pittet JF, Kerby JD, Bosarge PL, Wagener BM. Acute brain trauma, lung injury and pneumonia: more than just altered mental status and decreased airway protection. Am J Physiol Lung Cell Mol Physiol. 2017:ajplung.00485.2016. https://doi.org/10.1152/ajplung.00485.2016. [Epub ahead of print].

    Article  PubMed  Google Scholar 

  204. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424. Review.

    Article  CAS  PubMed  Google Scholar 

  205. Spanagel R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev. 2009;89(2):649–705. https://doi.org/10.1152/physrev.00013.2008. Review.

    Article  CAS  PubMed  Google Scholar 

  206. Lee RH, Tseng TY, Wu CY, Chen PY, Chen MF, Kuo JS, Lee TJ. Memantine inhibits α3β2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries. PLoS One. 2012;7(7):e40326. https://doi.org/10.1371/journal.pone.0040326. Epub 2012 Jul 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Filiano AJ, Gadani SP, Kipnis J. Interactions of innate and adaptive immunity in brain development and function. Brain Res. 2015;1617:18–27. PMC 4320678. PMID 25110235. https://doi.org/10.1016/j.brainres.2014.07.050.

    Article  CAS  PubMed  Google Scholar 

  208. Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev. 2014;43(19):6814–38. https://doi.org/10.1039/c3cs60467e. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Bowerman M, Vincent T, Scamps F, Perrin FE, Camu W, Raoul C. Neuroimmunity dynamics and the development of therapeutic strategies for amyotrophic lateral sclerosis. Front Cell Neurosci. 2013;7:214. https://doi.org/10.3389/fncel.2013.00214. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev. 1995;20(3):269–87.

    Article  CAS  PubMed  Google Scholar 

  211. Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65. https://doi.org/10.1016/j.addr.2011.11.010. Epub 2011 Nov 28.

    Article  CAS  PubMed  Google Scholar 

  212. Streit WJ. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci. 2006;29(9):506–10.

    Article  CAS  PubMed  Google Scholar 

  213. Wood P. Neuroinflammation: mechanisms and management. Totowa: Humana Press; 2003.

    Google Scholar 

  214. Clark AK, Staniland AA, Marchand F, Kaan TKY, McMahon SB, Malcangio M. P2X7-dependent release of interleukin-1 and nociception in the spinal cord following lipopolysaccharide. J Neurosci. 2010;30(2):573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K. Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem. 2001;78(6):1339–49.

    Article  CAS  PubMed  Google Scholar 

  216. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y. Extracellular ATP triggers tumor necrosis factor-α release from rat microglia. J Neurochem. 2002;75(3):965–72.

    Article  Google Scholar 

  217. Witcher KG, Eiferman DS, Godbout JP. Priming the inflammatory pump of the CNS after traumatic brain injury. Trends Neurosci. 2015;38(10):609–20. https://doi.org/10.1016/j.tins.2015.08.002. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gokce N. L-arginine and hypertension. J Nutr. 2004;134(10 Suppl):2807S–11S; discussion 2818S–2819S.

    Article  CAS  PubMed  Google Scholar 

  219. Higashi Y, Oshima T, Ozono R, et al. Aging and severity of hypertension attenuate endothelium-dependent renal vascular relaxation in humans. Hypertension. 1997;30(2 Pt 1):252–8.

    Article  CAS  PubMed  Google Scholar 

  220. Clarkson P, Adams MR, Powe AJ, et al. Oral L-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest. 1996;97(8):1989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kawano H, Motoyama T, Hirai N, et al. Endothelial dysfunction in hypercholesterolemia is improved by L-arginine administration: possible role of oxidative stress. Atherosclerosis. 2002;161(2):375–80.

    Article  CAS  PubMed  Google Scholar 

  222. Adams MR, McCredie R, Jessup W, et al. Oral L-arginine improves endothelium-dependent dilatation and reduces monocyte adhesion to endothelial cells in young men with coronary artery disease. Atherosclerosis. 1997;129(2):261–9.

    Article  CAS  PubMed  Google Scholar 

  223. Sydow K, Mondon CE, Cooke JP. Insulin resistance: potential role of the endogenous nitric oxide synthase inhibitor ADMA. Vasc Med. 2005;10(Suppl 1):S35–43.

    Article  PubMed  Google Scholar 

  224. Piatti PM, Monti LD, Valsecchi G, et al. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care. 2001;24(5):875–80.

    Article  CAS  PubMed  Google Scholar 

  225. Pieper GM, Siebeneich W, Dondlinger LA. Short-term oral administration of L-arginine reverses defective endothelium-dependent relaxation and cGMP generation in diabetes. Eur J Pharmacol. 1996;317(2–3):317–20.

    Article  CAS  PubMed  Google Scholar 

  226. Bode-Boger SM, Muke J, Surdacki A, et al. Oral L-arginine improves endothelial function in healthy individuals older than 70 years. Vasc Med. 2003;8(2):77–81.

    Article  PubMed  Google Scholar 

  227. Alvares TS, Meirelles CM, Bhambhani YN, et al. L-arginine as a potential ergogenic aid in healthy subjects. Sports Med. 2011;41(3):233–48.

    Article  PubMed  Google Scholar 

  228. Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Heart. 2001;85(3):342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Boger RH, Cooke JP, Vallance P. ADMA: an emerging cardiovascular risk factor. Vasc Med. 2005;10(Suppl 1):S1–2.

    Article  PubMed  Google Scholar 

  230. Cooke JP. ADMA: its role in vascular disease. Vasc Med. 2005;10(Suppl 1):S11–7.

    Article  PubMed  Google Scholar 

  231. Boger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “L-arginine paradox” and acts as a novel cardiovascular risk factor. J Nutr. 2004;134(10 Suppl):2842S–7S; discussion 2853S.

    Article  PubMed  Google Scholar 

  232. Sibal L, Agarwal SC, Home PD, et al. The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev. 2010;6(2):82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cooke JP. Asymmetrical dimethylarginine: the Uber marker? Circulation. 2004;109(15):1813–8.

    Article  PubMed  Google Scholar 

  234. Tran CT, Leiper JM, Vallance P. The DDAH/ADMA/NOS pathway. Atheroscler Suppl. 2003;4(4):33–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DePace, N.L., Colombo, J. (2019). Nitric Oxide (Prong-2). In: Clinical Autonomic and Mitochondrial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-17016-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17016-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17015-8

  • Online ISBN: 978-3-030-17016-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics