Skip to main content

Non-fluoroscopic Catheter Ablation of Accessory Pathways

  • 338 Accesses

Abstract

WPW ablation is one of the most rewarding procedures performed in electrophysiology. Fluoroscopy has been used to guide catheters into the heart chambers, but even in EP labs using fluoroscopy, 3D mapping systems are utilized more and more for accessory pathway (AP) ablation to tag AP location, a feature not possible to achieve using X-ray-only approach. We describe in detail how to approach AP ablation with little or no fluoroscopy in the right and left chambers of the heart.

Keywords

  • Ablation
  • Non-fluoro
  • Less-fluoro
  • Zero-fluoro
  • AVRT
  • Accessory pathway
  • AV reentrant tachycardia
  • Fluoroscopy reduction
  • 3D mapping

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-16992-3_8
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-16992-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5

References

  1. Anderson R, Ho S. Anatomy of the atrioventricular junctions with regard to ventricular preexcitation. Pacing Clin Electrophysiol. 1997;20:2072–6.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Anselmino M, Sillano D, Casolati D, et al. A new electrophysiology era: zero fluoroscopy. J Cardiovasc Med (Hagerstown). 2013;14(3):221–7.

    CrossRef  Google Scholar 

  3. Gaita F, Guerra PG, Battaglia A, et al. The dream of near-zero X-rays ablation comes true. Eur Heart J. 2016;37(36):2749–55.

    PubMed  CrossRef  Google Scholar 

  4. Casella M, Dello Russo A, Russo E, et al. X-ray exposure in cardiac electrophysiology: a retrospective analysis in 8150 patients over 7 years of activity in a modern, large-volume laboratory. J Am Heart Assoc. 2018;7(11):e008233.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  5. Yang L, Sun G, Chen X, et al. Meta-analysis of zero or near-zero fluoroscopy use during ablation of cardiac arrhythmias. Am J Cardiol. 2016;118(10):1511–8.

    PubMed  CrossRef  Google Scholar 

  6. Scaglione M, Ebrille E, Clemente FD, et al. Catheter ablation of atrial fibrillation without radiation exposure using a 3D mapping system. J Atr Fibrillation. 2015;7(5):1167. https://doi.org/10.4022/jafib.1167.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  7. Reddy VY, Morales G, Ahmed H, et al. Catheter ablation of atrial fibrillation without the use of fluoroscopy. Heart Rhythm. 2010;7(11):1644–53.

    PubMed  CrossRef  Google Scholar 

  8. Anderson RH, Brown NA. The anatomy of the heart revisited. Anat Rec. 1996;246:1–7.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Anderson RH, Brown NA, Webb S. Development and structure of the atrial septum. Heart. 2002;88:104–10.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  10. Anderson RH, Webb S, Brown NA, et al. Development of the heart. 2. Septation of the atriums and ventricles. Heart. 2003;89:949–58.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Klein G, Hackel D, Gallagher J. Anatomic substrate of impaired conduction over an accessory atrioventricular pathway in the Wolff-Parkinson-White syndrome. Circulation. 1980;61:1249–56.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Chauvin M, Shah D, Haïssaguerre M, et al. The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans. Circulation. 2000;101:647–52.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Arruda M, McClelland J, Beckman K, et al. Atrial appendage-ventricular connections: a new variant of preexcitation. Circulation. 1994;90:1–126.

    CrossRef  Google Scholar 

  14. De Chillou C, Rodriguez L, Schlapfer J, et al. Clinical characteristics and electrophysiologic properties of atrioventricular accessory pathways: importance of the accessory pathway location. J Am Coll Cardiol. 1992;20:666–71.

    PubMed  CrossRef  Google Scholar 

  15. Jackman WM, Friday KJ, Fitzgerald DM, et al. Localization of left free-wall and posteroseptal accessory atrioventricular pathways by direct recordings of accessory pathway activation. Pacing Clin Electrophysiol. 1989;12:204–14.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Wang X, McCelland J, Beckman K, et al. Left free-wall accessory pathway ablation from the coronary sinus: unique coronary sinus electrogram pattern. Circulation. 1992;86:I–586.

    Google Scholar 

  17. Becker AE, Anderson RH. The Wolff-Parkinson-White syndrome and its anatomical substrates. Anat Rec. 1981;201:169–77.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Becker A, Anderson R, Durrer D, et al. The anatomical substrates of Wolff-Parkinson-White syndrome: a clinical correlation in seven patients. Circulation. 1978;57:870–9.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Shinbane J, Lesh M, Stevenson W, et al. Anatomic and electrophysiologic relation between the coronary sinus and mitral annulus: implications for ablation of left-sided accessory pathways. Am Heart J. 1998;135:93–8.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Sun Y, Arruda M, Otomo K, et al. Coronary sinus-ventricular accessory connections producing posteroseptal and left posterior accessory pathways: incidence and electrophysiological identification. Circulation. 2002;106:1362–7.

    PubMed  CrossRef  Google Scholar 

  21. Casella M, Dello Russo A, Pelargonio G, et al. Near zerO fluoroscopic exPosure during catheter ablAtion of supRavenTricular arrhYthmias: the NO-PARTY multicentre randomized trial. Europace. 2016;18(10):1565–72.

    PubMed  CrossRef  Google Scholar 

  22. Mahaim I, Winston MR. Recherches d’lanatomic comparee et du pathologic experimentale sur les connexions hautes du faisceau de His-Tawara. Cardiologia. 1941;5:189–260.

    CrossRef  Google Scholar 

  23. Haïssaguerre M, Gaita F, Fischer B, et al. Radiofrequency catheter ablation of left lateral accessory pathways via the coronary sinus. Circulation. 1992;86:1464–8.

    PubMed  CrossRef  Google Scholar 

  24. Chen S, Tai C. Ablation of atrioventricular accessory pathways: current technique—state of the art. Pacing Clin Electrophysiol. 2001;24:1795–809.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Josephson M. Preexcitation syndromes. In: Josephson M, editor. Clinical cardiac electrophysiology: techniques and interpretations. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2002. p. 322–424.

    Google Scholar 

  26. Haïssaguerre M, Gaita F, Marcus FI, et al. Radiofrequency catheter ablation of accessory pathways: a contemporary review. J Cardiovasc Electrophysiol. 1994;5:532–52.

    PubMed  CrossRef  Google Scholar 

  27. Katsouras C, Greakas G, Goudevenos J, et al. Localization of accessory pathways by the electrocardiogram: which is the degree of accordance of three algorithms in use? Pacing Clin Electrophysiol. 2004;27:189–93.

    PubMed  CrossRef  Google Scholar 

  28. Teo W, Klein G, Guiraudon G, et al. Predictive accuracy of electrophysiologic localization of accessory pathways. J Am Coll Cardiol. 1991;18:527–32.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Calkins H, Kim Y-N, Schmaltz S, et al. Electrogram criteria for identification of appropriate target sites for radiofrequency catheter ablation of accessory atrioventricular connections. Circulation. 1992;85:565–73.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Hirao K, Otomo K, Wang X, et al. Para-Hisian pacing: a new method for differentiating retrograde conduction over an accessory AV pathway from conduction over the AV node. Circulation. 1996;94:1027–35.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Miles WM, Yee R, Klein GJ, et al. The preexcitation index: an aid in determining the mechanism of supraventricular tachycardia and localizing accessory pathways. Circulation. 1986;74:493–500.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Yang Y, Cheng J, Glatter K, et al. Quantitative effects of functional bundle branch block in patients with atrioventricular reentrant tachycardia. Am J Cardiol. 2000;85:826–31.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Mahaim I, Benatt A. Nouvelles recherches sur les connexions superieures de la branch gauche du faisceau de His-Tawara avec cloison interventriculaire. Cardiologia. 1938;1:61–76.

    CrossRef  Google Scholar 

  34. Ellenbogen KA, O’Callaghan WG, Colavita PG, et al. Catheter atrioventricular junction ablation for recurrent supraventricular tachycardia with nodoventricular fibers. Am J Cardiol. 1985;55:1227–9.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Tchou P, Lehmann MH, Jazayeri M, Akhtar M. Atriofascicular connection or a nodoventricular Mahaim fiber? Electrophysiologic elucidation of the pathway and associated reentrant circuit. Circulation. 1988;77:837–48.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Gillette PC, Garson A Jr, Cooey DA, et al. Prolonged and decremental antegrade conduction properties in right anterior atrioventricular connections: wide QRS antidromic tachycardia of left bundle block pattern without Wolff- Parkinson-White configuration in sinus rhythm. Am Heart J. 1982;103:66.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Knight BP, Zivin A, Souza J, et al. A technique for the rapid diagnosis of atrial tachycardia in the electrophysiology laboratory. J Am Coll Cardiol. 1999;33:775–81.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Grogin HR, Lee RJ, Kwasman M, et al. Radiofrequency catheter ablation of atriofascicular and nodoventricular Mahaim tracts. Circulation. 1994;90:272–81.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Klein GJ, Guiraudon GM, Kerr CR, et al. “Nodoventricular” accessory pathway: evidence for a distinct accessory atrioventricular pathway with atrioventricular node-like properties. J Am Coll Cardiol. 1988;11:1035.

    CAS  PubMed  CrossRef  Google Scholar 

  40. Kerst G, Weig HJ, Weretka S, et al. Contact force-controlled zero-fluoroscopy catheter ablation of right-sided and left atrial arrhythmia substrates. Heart Rhythm. 2012;9(5):709–14.

    PubMed  CrossRef  Google Scholar 

  41. Mah DY, Miyake CY, Sherwin ED, et al. The use of an integrated electroanatomic mapping system and intracardiac echocardiography to reduce radiation exposure in children and young adults undergoing ablation of supraventricular tachycardia. Europace. 2014;16(2):277–83.

    PubMed  CrossRef  Google Scholar 

  42. Razminia M, Manankil MF, Eryazici PL, et al. Nonfluoroscopic catheter ablation of cardiac arrhythmias in adults: feasibility, safety, and efficacy. J Cardiovasc Electrophysiol. 2012;23(10):1078–86.

    PubMed  CrossRef  Google Scholar 

  43. Kerst G, Parade U, Weig HJ, et al. A novel technique for zero-fluoroscopy catheter ablation used to manage Wolff-Parkinson-White syndrome with a left-sided accessory pathway. Pediatr Cardiol. 2012;33(5):820–3.

    PubMed  CrossRef  Google Scholar 

  44. Ferguson JD, Helms A, Mangrum JM, et al. Catheter ablation of atrial fibrillation without fluoroscopy using intracardiac echocardiography and electroanatomic mapping. Circ Arrhythm Electrophysiol. 2009;2(6):611–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Brooks AG, Wilson L, Chia NH, et al. Accuracy and clinical outcomes of CT image integration with Carto-Sound compared to electro-anatomical mapping for atrial fibrillation ablation: a randomized controlled study. Int J Cardiol. 2013;168(3):2774–82.

    PubMed  CrossRef  Google Scholar 

  46. Merino JL. Tools or toys? The 20-year anniversary of the nonfluoroscopic mapping system dilemma. Rev Esp Cardiol. 2017;70(9):690–3.

    PubMed  CrossRef  Google Scholar 

  47. Gallagher JJ, Smith WM, Kasell JH, et al. Role of Mahaim fibers in cardiac arrhythmias in man. Circulation. 1981;64:176–89.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Kuck K-H, Schluter M. Single-catheter approach to radiofrequency current ablation of left-sided accessory pathways in patients with Wolff-Parkinson-White syndrome. Circulation. 1991;84:2366–75.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Swartz F, Tracy CM, Fletcher RD. Radiofrequency endocardial catheter ablation of accessory atrioventricular pathway atrial insertion sites. Circulation. 1993;87:487–99.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Chen X, Borggrefe M, Shenasa M, et al. Characteristics of local electrogram predicting successful transcatheter radiofrequency ablation of left-sided accessory pathways. J Am Coll Cardiol. 1992;20:656–65.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Hindricks G, Kottkamp H, Chen X, et al. Localization and radiofrequency catheter ablation of left-sided accessory pathways during atrial fibrillation. J Am Coll Cardiol. 1995;25:444–51.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Bashir Y, Heald SC, Katritsis D, et al. Radiofrequency ablation of accessory atrioventricular pathways: predictive value of local electrogram characteristics for the identification of successful target sites. Br Heart J. 1993;69:315–21.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  53. Cappato R, Schlüter M, Mont L, Kuck K-H. Anatomic, electrical and mechanical factors affecting bipolar endocardial electrogram: impact on catheter ablation of manifest left free-wall accessory pathways. Circulation. 1994;90:884–94.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Takahashi A, Shah D, Jais P, et al. Specific electrocardiographic features of manifest coronary vein posteroseptal accessory pathways. J Cardiovasc Electrophysiol. 1998;9:1015–25.

    CAS  PubMed  CrossRef  Google Scholar 

  55. Michaud GF, Tada H, Chough S, et al. Differentiation of atypical atrioventricular node re-entrant tachycardia from orthodromic reciprocating tachycardia using a septal accessory pathway by the response to ventricular pacing. J Am Coll Cardiol. 2001;38:1163–7.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Jackman WM, Wang X, Friday KJ, et al. Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. N Engl J Med. 1991;324:1605–11.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Calkins H, Yong P, Miller J, et al. Catheter ablation of accessory pathways, atrioventricular nodal reentrant tachycardia, and the atrioventricular junction: final results of a prospective, multicenter clinical trial. Circulation. 1999;99:262–70.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Xie B, Heald SC, Camm AJ, et al. Successful radiofrequency ablation of accessory pathways with the first energy delivery: the anatomic and electrical characteristics. Eur Heart J. 1996;17:1072–9.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Langberg JJ, Calkins H, Kim Y-N, et al. Recurrence of conduction in accessory atrioventricular connections after initially successful radiofrequency catheter ablation. J Am Coll Cardiol. 1992;19:1588–92.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Coppess MA, Altemose GT, Jayachandran JV, et al. Unusual features of intermediate septal bypass tracts. J Cardiovasc Electrophysiol. 2000;11:730–5.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Álvarez M, Bertomeu-González V, Arcocha MF, et al. Nonfluoroscopic catheter ablation. Results from a prospective multicenter registry. Rev Esp Cardiol (Engl Ed). 2017;70(9):699–705.

    CrossRef  Google Scholar 

  62. Scaglione M, Ebrille E, Caponi D, et al. Zero-fluoroscopy ablation of accessory pathways in children and adolescents: CARTO3 electroanatomic mapping combined with RF and cryoenergy. Pacing Clin Electrophysiol. 2015;38(6):675–81.

    PubMed  CrossRef  Google Scholar 

  63. Clark J, Bockoven JR, Lane J, et al. Use of three-dimensional catheter guidance and trans-esophageal echocardiography to eliminate fluoroscopy in catheter ablation of left-sided accessory pathways. Pacing Clin Electrophysiol. 2008;31(3):283–9.

    PubMed  CrossRef  Google Scholar 

  64. Huo Y, Christoph M, Forkmann M, et al. Reduction of radiation exposure during atrial fibrillation ablation using a novel fluoroscopy image integrated 3-dimensional electroanatomic mapping system: a prospective, randomized, single-blind, and controlled study. Heart Rhythm. 2015;12(9):1945–55.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Rivera, S.H., Llorens, J.L.M. (2019). Non-fluoroscopic Catheter Ablation of Accessory Pathways. In: Proietti, R., Wang, Y., Yao, Y., Zhong, G., Lin Wu, S., Ayala-Paredes, F. (eds) Cardiac Electrophysiology Without Fluoroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-16992-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16992-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16991-6

  • Online ISBN: 978-3-030-16992-3

  • eBook Packages: MedicineMedicine (R0)