Skip to main content

3D Mapping and Reduction in Radiation Exposure

  • 324 Accesses

Abstract

The field of cardiac electrophysiology has evolved dramatically in the last decades. Catheter ablation is now the standard of care for the treatment of several arrhythmias and the development of technology allows for more and more complex procedures to be realized.

3D mapping is used during many EP procedures for anatomic reconstruction, navigation, activation mapping (integration of the timing of recorded electrograms), and voltage mapping (integration of the amplitude of local signal). Systems used today have evolved to allow precision in localization of catheters and anatomical landmark, reliability and stability of the virtual anatomy, integration of different imaging modalities, and multiple features to facilitate mapping and ablation. This chapter mainly focuses on the reduction in fluoroscopy that can be achieved using 3D mapping systems.

Keywords

  • Mapping systems
  • Non-fluoro
  • Less-fluoro
  • Zero-fluoro
  • Fluoroscopy reduction
  • 3D mapping

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-16992-3_4
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-16992-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5

References

  1. Khaykin Y, Oosthuizen R, Zarnett L, Wulffhart ZA, Whaley B, Hill C, et al. CARTO-guided vs. NavX-guided pulmonary vein antrum isolation and pulmonary vein antrum isolation performed without 3-D mapping: effect of the 3-D mapping system on procedure duration and fluoroscopy time. J Interv Card Electrophysiol. 2011;30(3):233–40.

    CrossRef  Google Scholar 

  2. Christoph M, Wunderlich C, Moebius S, Forkmann M, Sitzy J, Salmas J, et al. Fluoroscopy integrated 3D mapping significantly reduces radiation exposure during ablation for a wide spectrum of cardiac arrhythmias. Europace. 2015;17(6):928–37.

    CrossRef  Google Scholar 

  3. Estner HL, Deisenhofer I, Luik A, Ndrepepa G, von Bary C, Zrenner B, et al. Electrical isolation of pulmonary veins in patients with atrial fibrillation: reduction of fluoroscopy exposure and procedure duration by the use of a non-fluoroscopic navigation system (NavX). Europace. 2006;8(8):583–7.

    CrossRef  Google Scholar 

  4. Yang L, Sun G, Chen X, Chen G, Yang S, Guo P, et al. Meta-analysis of zero or near-zero fluoroscopy use during ablation of cardiac arrhythmias. Am J Cardiol. 2016;118(10):1511–8.

    CrossRef  Google Scholar 

  5. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14(10):e275–444.

    CrossRef  Google Scholar 

  6. Prolic Kalinsek T, Jan M, Rupar K, Razen L, Antolic B, Zizek D. Zero-fluoroscopy catheter ablation of concealed left accessory pathway in a pregnant woman. Europace. 2017;19(8):1384.

    CrossRef  Google Scholar 

  7. Karbarz D, Stec PJ, Deutsch K, Sledz J, Stec S. Zero-fluoroscopy catheter ablation of symptomatic pre-excitation from non-coronary cusp during pregnancy. Kardiol Pol. 2017;75(12):1351.

    CrossRef  Google Scholar 

  8. Huang X, Chen Y, Huang Z, He L, Liu S, Deng X, et al. Catheter radiofrequency ablation for arrhythmias under the guidance of the Carto 3 three-dimensional mapping system in an operating room without digital subtraction angiography. Medicine (Baltimore). 2018;97(25):e11044.

    CrossRef  Google Scholar 

  9. Giaccardi M, Mascia G, Paoletti Perini A, Giomi A, Cartei S, Milli M. Long-term outcomes after “Zero X-ray” arrhythmia ablation. J Interv Card Electrophysiol. 2019;54:43–8.

    CrossRef  Google Scholar 

  10. Sommer P, Bertagnolli L, Kircher S, Arya A, Bollmann A, Richter S, et al. Safety profile of near-zero fluoroscopy atrial fibrillation ablation with non-fluoroscopic catheter visualization: experience from 1000 consecutive procedures. Europace. 2018;20:1952–8.

    CrossRef  Google Scholar 

  11. Alvarez M, Bertomeu-Gonzalez V, Arcocha MF, Morina P, Tercedor L, Ferrero de Loma A, et al. Nonfluoroscopic catheter ablation. Results from a prospective multicenter registry. Rev Esp Cardiol (Engl Ed). 2017;70(9):699–705.

    CrossRef  Google Scholar 

  12. Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(1):32–8.

    CrossRef  Google Scholar 

  13. Hsia HH, Lin D, Sauer WH, Callans DJ, Marchlinski FE. Anatomic characterization of endocardial substrate for hemodynamically stable reentrant ventricular tachycardia: identification of endocardial conducting channels. Heart Rhythm. 2006;3(5):503–12.

    CrossRef  Google Scholar 

  14. D’Amario D, Leone AM, Narducci ML, Smaldone C, Lecis D, Inzani F, et al. Human cardiac progenitor cells with regenerative potential can be isolated and characterized from 3D-electro-anatomic guided endomyocardial biopsies. Int J Cardiol. 2017;241:330–43.

    CrossRef  Google Scholar 

  15. Corrado D, Basso C, Leoni L, Tokajuk B, Bauce B, Frigo G, et al. Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2005;111(23):3042–50.

    CrossRef  Google Scholar 

  16. Linton NW, Koa-Wing M, Francis DP, Kojodjojo P, Lim PB, Salukhe TV, et al. Cardiac ripple mapping: a novel three-dimensional visualization method for use with electroanatomic mapping of cardiac arrhythmias. Heart Rhythm. 2009;6(12):1754–62.

    CrossRef  Google Scholar 

  17. Luther V, Cortez-Dias N, Carpinteiro L, de Sousa J, Balasubramaniam R, Agarwal S, et al. Ripple mapping: Initial multicenter experience of an intuitive approach to overcoming the limitations of 3D activation mapping. J Cardiovasc Electrophysiol. 2017;28(11):1285–94.

    CrossRef  Google Scholar 

  18. Luther V, Linton NW, Koa-Wing M, Lim PB, Jamil-Copley S, Qureshi N, et al. A prospective study of ripple mapping in atrial tachycardias: a novel approach to interpreting activation in low-voltage areas. Circ Arrhythm Electrophysiol. 2016;9(1):e003582.

    CrossRef  Google Scholar 

  19. Enriquez A, Saenz LC, Rosso R, Silvestry FE, Callans D, Marchlinski FE, et al. Use of intracardiac echocardiography in interventional cardiology: working with the anatomy rather than fighting it. Circulation. 2018;137(21):2278–94.

    CrossRef  Google Scholar 

  20. Khaykin Y, Skanes A, Wulffhart ZA, Gula L, Whaley B, Oosthuizen R, et al. Intracardiac ECHO integration with three dimensional mapping: role in AF ablation. J Atr Fibrillation. 2008;1(2):32.

    PubMed  PubMed Central  Google Scholar 

  21. Moak JP, Sumihara K, Swink J, Hanumanthaiah S, Berul CI. Ablation of the vanishing PVC, facilitated by quantitative morphology-matching software. Pacing Clin Electrophysiol. 2017;40(11):1227–33.

    CrossRef  Google Scholar 

  22. Wu J, Estner H, Luik A, Ucer E, Reents T, Pflaumer A, et al. Automatic 3D mapping of complex fractionated atrial electrograms (CFAE) in patients with paroxysmal and persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2008;19(9):897–903.

    CrossRef  Google Scholar 

  23. Jadidi AS, Arentz T. A decade of CFAE mapping: still seeking more specific tools to identify sources and substrate of persistent atrial fibrillation. Arrhythm Electrophysiol Rev. 2015;4(2):108.

    CrossRef  Google Scholar 

  24. Lehrmann H, Jadidi AS, Minners J, Keyl C, Hochholzer W, Carrapatoso F, et al. Important reduction of the radiation dose for pulmonary vein isolation using a multimodal approach. Europace. 2018;20(2):279–87.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Nault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nault, I. (2019). 3D Mapping and Reduction in Radiation Exposure. In: Proietti, R., Wang, Y., Yao, Y., Zhong, G., Lin Wu, S., Ayala-Paredes, F. (eds) Cardiac Electrophysiology Without Fluoroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-16992-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16992-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16991-6

  • Online ISBN: 978-3-030-16992-3

  • eBook Packages: MedicineMedicine (R0)