Skip to main content

Radiation Exposure and Safety for the Electrophysiologist

  • 340 Accesses

Abstract

Cardiac electrophysiology frequently employs fluoroscopy in both diagnostic and therapeutic procedures. Electrophysiologists need to be aware of the different degrees of exposure associated with each procedure and utilise a personal dosimeter to monitor exposure. In general, diagnostic procedures have lower radiation exposure compared to ablative procedures. Atrial fibrillation ablation has the highest radiation exposure of all electrophysiologic procedures. Radiation exposure has been shown to pose a cumulative risk of cancer and a threshold-based risk for tissue and organ injury. Radiation safety protocols must be utilised to minimise exposure to radiation during the procedure. Measures to reduce radiation exposure include equipment customisation, workflow adaptations, protective gear and effective use of non-radiation techniques. Pregnancy presents a unique challenge and monitoring is essential to prevent harmful consequences to both the mother and the foetus.

Keywords

  • Radiation exposure
  • Radiation safety
  • Electrophysiology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-16992-3_2
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-16992-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4

References

  1. Scheinman MM, Morady F, Hess DS, Gonzalez R. Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA. 1982;248:851.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018;15:e190–e252 [published online ahead of print 30 Oct 2017]. https://doi.org/10.1016/j.hrthm.2017.10.035.

    PubMed  CrossRef  Google Scholar 

  3. Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. Europace. 2018;20(1):157–208.

    PubMed  CrossRef  Google Scholar 

  4. Page RL, Joglar JA, Caldwell MA, et al. 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2016;67:e27–e115.

    PubMed  CrossRef  Google Scholar 

  5. Kim KP, Donald LM, Balter S, Kleinerman RA, Linet MS, Kwon D, et al. Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys. 2008;94:211–27.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Picano E, Vañó E, Rehani MM, Cuocolo A, Mont L, Bodi V, Bar O, Maccia C, Pierard L, Sicari R, Plein S, Mahrholdt H, Lancellotti P, Knuuti J, Heidbuchel H, Di Mario C, Badano LP. The appropriate and justified use of medical radiation in cardiovascular imaging: a position document of the ESC Associations of Cardiovascular Imaging, Percutaneous Cardiovascular Interventions and Electrophysiology. Eur Heart J. 2014;35:665–72.

    PubMed  CrossRef  Google Scholar 

  7. Venneri L, Rossi F, Botto N, Andreassi MG, Salcone N, Emad A, Lazzeri M, Gori C, Vano E, Picano E. Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the national research council’s biological effects of ionizing radiation VII report. Am Heart J. 2009;157:118–24.

    PubMed  CrossRef  Google Scholar 

  8. Buchanan GL, Chieffo A, Mehilli J, Mikhail GW, Mauri F, Presbitero P, et al. The occupational effects of interventional cardiology: results from the WIN for safety survey. EuroIntervention. 2012;8:658–63.

    PubMed  CrossRef  Google Scholar 

  9. Marinskis G, Bongiorni MG, Dagres N, Lewalter T, Pison L, Blomstrom-Lundqvist C. Scientific Initiative Committee, European Heart Rhythm Association. X-ray exposure hazards for physicians performing ablation procedures and device implantation: results of the European Heart Rhythm Association survey. Europace. 2013;15:444–6.

    PubMed  CrossRef  Google Scholar 

  10. Roguin A, Goldstein J, Bar O. Brain tumours among interventional cardiologists: a cause for alarm? Report of four new cases from two cities and a review of the literature. EuroIntervention. 2012;7(9):1081–6.

    PubMed  CrossRef  Google Scholar 

  11. Sarkozy A, De Potter T, Heidbuchel H, Ernst S, Kosiuk J, et al. Occupational radiation exposure in the electrophysiology laboratory with a focus on personnel with reproductive potential and during pregnancy: a European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS). Europace. 2017;19(12):1909–22.

    CrossRef  PubMed  Google Scholar 

  12. ICRP. Compendium of dose coefficients based on ICRP publication 60. ICRP publication 119. Ann ICRP. 2012;41(Suppl).

    Google Scholar 

  13. Modan B, Keinan L, Blumstein T, et al. Cancer following cardiac catheterization in childhood. Int J Epidemiol. 2000;29:424–8.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499–505.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Jacobi W. The concept of effective dose—a proposal for the combination of organ doses. Radiat Environ Biophys. 1975;12:101–9.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Shrimpton PC, Wall BF, Jones DG, Fisher ES. The measurement of energy imparted to patients during diagnostic X-ray examinations using the Diamentor exposure-area product meter. Phys Med Biol. 1984;29:1199–208.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Heron J. Estimation of effective dose to the patient during medical X-ray examinations from measurements of the dose-area product. Phys Med Biol. 1992;37:2117–26.

    PubMed  CrossRef  Google Scholar 

  18. Theocharopoulos N, Perisinakis K, Damilakis J, Varveris H, Gourtsoyiannis N. Comparison of four methods for assessing patient effective dose from radiological examinations. Med Phys. 2002;29:2070–9.

    PubMed  CrossRef  Google Scholar 

  19. Jaco JW, Miller DL. Measuring and monitoring radiation dose during fluoroscopically guided procedures. Tech Vasc Interv Radiol. 2010;13:188–93.

    PubMed  CrossRef  Google Scholar 

  20. Schueler BA, Vrieze TJ, Bjarnason H, Stanson AW. An investigation of operator exposure in interventional radiology. Radiographics. 2006;26:1533–41.

    PubMed  CrossRef  Google Scholar 

  21. Servomaa A, Karppinen J. The dose-area product and assessment of the occupational dose in interventional radiology. Radiat Prot Dosim. 2001;96:235–6.

    CAS  CrossRef  Google Scholar 

  22. Williams JR. Scatter dose estimation based on dose-area product and the specification of radiation barriers. Br J Radiol. 1996;69:1032–7.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Koenig TR, Mettler FA, Wagner LK. Skin injuries from fluoroscopically guided procedures: part 2, review of 73 cases and recommendations for minimizing dose delivered to patient. AJR Am J Roentgenol. 2001;177:13–20.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Wagner LK, McNeese MD, Marx MV, et al. Severe skin reactions from interventional fluoroscopy: case report and review of the literature. Radiology. 1999;213:773–6.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Koenig TR, Wolff D, Mettler FA, et al. Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am J Roentgenol. 2001;177:3–11.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Ciraj-Bjelac O, Rehani MM, Sim KH, et al. Risk for radiation induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76:826–34.

    PubMed  CrossRef  Google Scholar 

  27. Rehani MM, Ciraj-Bjelac O, Vano E, Miller DL, Walsh S, Giordano BD, et al. International Commission on Radiological Protection. ICRP publication 117. Radiological protection in fluoroscopically guided procedures performed outside the imaging department. Ann ICRP. 2010;40:1–102.

    CAS  PubMed  CrossRef  Google Scholar 

  28. Kovoor P, Ricciardello M, Collins L, Uther JB, Ross DL. Risk to patients from radiation associated with radiofrequency ablation for supraventricular tachycardia. Circulation. 1998;98:1534–40.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Lickfett L, Mahesh M, Vasamreddy C, et al. Radiation exposure during catheter ablation of atrial fibrillation. Circulation. 2004;110:3003–10.

    PubMed  CrossRef  Google Scholar 

  30. Rosenthal LS, Mahesh M, Beck TJ, et al. Predictors of fluoroscopy time and estimated radiation exposure during radiofrequency catheter ablation procedures. Am J Cardiol. 1998;82:451–8.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Balter S. Stray radiation in the cardiac catheterisation laboratory. Radiat Prot Dosim. 2001;94:183.

    CAS  CrossRef  Google Scholar 

  32. Vano E. Radiation exposure to cardiologists: how it could be reduced. Heart. 2003;89:1123.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Macle L, Weerasooriya R, Jais P, et al. Radiation exposure during radiofrequency catheter ablation for atrial fibrillation. Pacing Clin Electrophysiol. 2003;26:288–91.

    PubMed  CrossRef  Google Scholar 

  34. Voskoboinik A, Kalman ES, Savicky Y, Sparks PB, Morton JB, Lee G, Kistler PM, Kalman JM. Reduction in radiation dose for atrial fibrillation ablation over time: a 12-year single-center experience of 2344 patients. Heart Rhythm. 2017;14:810–6.

    PubMed  CrossRef  Google Scholar 

  35. Sporton SC, Earley MJ, Nathan AW, Schilling RJ. Electroanatomic versus fluoroscopic mapping for catheter ablation procedures: a prospective randomized study. J Cardiovasc Electrophysiol. 2004;15:310–5.

    PubMed  CrossRef  Google Scholar 

  36. Rogers DP, England F, Lozhkin K, Lowe MD, Lambiase PD, Chow AW. Improving safety in the electrophysiology laboratory using a simple radiation dose reduction strategy: a study of 1007 radiofrequency ablation procedures. Heart. 2011;97(5):366–70.

    PubMed  CrossRef  Google Scholar 

  37. Casella M, Dello Russo A, Russo E, Catto V, Pizzamiglio F, Zucchetti M, et al. X-ray exposure in cardiac electrophysiology: a retrospective analysis in 8150 patients over 7 years of activity in a modern, large-volume laboratory. J Am Heart Assoc. 2018;7(11):e008233.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  38. Vom J, Williams I. Justification of radiographic examinations: what are the key issues? J Med Radiat Sci. 2017;64(3):212–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Chambers CE, Fetterly KA, Holzer R, Lin PJ, Blankenship JC, Balter S, et al. Radiation safety program for the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2011;77(4):546–56.

    PubMed  CrossRef  Google Scholar 

  40. Ernst S, Castellano I. Radiation exposure and safety for the electrophysiologist. Curr Cardiol Rep. 2013;15(10):402.

    PubMed  CrossRef  Google Scholar 

  41. Fetterly KA, Mathew V, Lennon R, Bell MR, Holmes DR Jr, Rihal CS. Radiation dose reduction in the invasive cardiovascular laboratory: implementing a culture and philosophy of radiation safety. JACC Cardiovasc Interv. 2012;5:866–73.

    PubMed  CrossRef  Google Scholar 

  42. Estner HL, Grazia Bongiorni M, Chen J, Dagres N, Hernandez-Madrid A, Blomstrom-Lundqvist C. Use of fluoroscopy in clinical electrophysiology in Europe: results of the European Heart Rhythm Association Survey. Europace. 2015;17:1149–52.

    PubMed  CrossRef  Google Scholar 

  43. Miller DL, Vano E, Bartal G, Balter S, Dixon R, Padovani R, Schueler B, Cardella JF, de Baere T. Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology. Cardiovasc Intervent Radiol. 2010;33:230–9.

    PubMed  CrossRef  Google Scholar 

  44. de Souza E, de Macedo Soares JP. Occupational and technical correlations of interventional radiology. J Vasc Bras. 2008;7:341–50.

    CrossRef  Google Scholar 

  45. Vano E, Kleiman NJ, Duran A, Rehani MM, Echeverri D, Cabrera M. Radiation cataract risk in interventional cardiology personnel. Radiat Res. 2010;174:490–5.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Ciraj-Bjelac O, Rehani M, Minamoto A, Sim KH, Liew HB, Vano E. Radiation-induced eye lens changes and risk for cataract in interventional cardiology. Cardiology. 2012;123:168–71.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Jacob S, Donadille L, Maccia C, Bar O, Boveda S, Laurier D, Bernier MO. Eye lens radiation exposure to interventional cardiologists: a retrospective assessment of cumulative doses. Radiat Prot Dosim. 2013;153:282–93.

    CrossRef  Google Scholar 

  48. Principi S, Delgado Soler C, Ginjaume M, Beltran Vilagrasa M, Rovira Escutia JJ, Duch MA. Eye lens dose in interventional cardiology. Radiat Prot Dosim. 2015;165:289–93.

    CAS  CrossRef  Google Scholar 

  49. Hirshfeld JW Jr, Balter S, Brinker JA, et al. ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures. J Am Coll Cardiol. 2004;44:2259–82.

    PubMed  CrossRef  Google Scholar 

  50. Theocharopoulos N, Damilakis J, Perisinakis K, Manios E, Vardas P, Gourtsoyiannis N. Occupational exposure in the electrophysiology laboratory: quantifying and minimizing radiation burden. Br J Radiol. 2006;79:644–51.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Beston S, Efstathopolous EP, Katritsis D, Faulkner K, Panayiotakis G. Patient radiation doses during cardiac catheterization procedures. Br J Radiol. 1998;71(846):634–9.

    CrossRef  Google Scholar 

  52. Agarwal S, Parashar A, Bajaj NS, et al. Relationship of beam angulation and radiation exposure in the cardiac catheterization laboratory. JACC Cardiovasc Interv. 2014;7:558–66.

    PubMed  CrossRef  Google Scholar 

  53. Wittkampf FH, Wever EF, Vos K, Geleijns J, Schalij MJ, van der Tol J, et al. Reduction of radiation exposure in the cardiac electrophysiology laboratory. Pacing Clin Electrophysiol. 2000;23:1638–44.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Davies AG, Cowen AR, Kengyelics SM, Moore J, Pepper C, Cowan C, et al. X-ray dose reduction in fluoroscopically guided electrophysiology procedures. Pacing Clin Electrophysiol. 2006;29:262–71.

    PubMed  CrossRef  Google Scholar 

  55. Walters TE, Kistler PM, Morton JB, Sparks PB, Halloran K, Kalman JM. Impact of collimation on radiation exposure during interventional electrophysiology. Europace. 2012;14(11):1670.

    PubMed  CrossRef  Google Scholar 

  56. De Buck S, La Gerche A, Ector J, et al. Asymmetric collimation can significantly reduce patient radiation dose during pulmonary vein isolation. Europace. 2012;14:437–44.

    PubMed  CrossRef  Google Scholar 

  57. Betsou S, Efstathopoulos EP, Katritsis D, Faulkner K, Panayiotakis G. Patient radiation doses during cardiac catheterization procedures. Br J Radiol. 1998;71:634–9.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Efstathopoulos E, Karvouni E, Kottou S, et al. Patient dosimetry during coronary interventions: a comprehensive analysis. Am Heart J. 2004;147:468–75.

    PubMed  CrossRef  Google Scholar 

  59. Olcay A, Guler E, Karaca IO, Omaygenc MO, Kizilirmak F, Olgun E, Yenipinar E, Cakmak HA, Duman D. Comparison of fluoro and cine coronary angiography: balancing acceptable outcomes with a reduction in radiation dose. J Invasive Cardiol. 2015;27:199–202.

    PubMed  Google Scholar 

  60. JCS Joint Working Group. Guidelines for radiation safety in interventional cardiology (JCS 2006). Digest version. Circ J. 2010;74:2760–85.

    CrossRef  Google Scholar 

  61. Smith PH. EC directive: 97/43/Euratom. Br J Radiol. 1998;71:108.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Heidbuchel H, Wittkampf FH, Vano E, Ernst S, Schilling R, Picano E, Mont L, Jais P, de Bono J, Piorkowski C, Saad E, Femenia F. Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace. 2014;16:946.

    CrossRef  PubMed  Google Scholar 

  63. Wittkampf F, Wever E, Derksen R, Wilde A, Ramanna H, Hauer R, et al. LocaLisa: new technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation. 1999;99:1312–7.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation. 1997;95:1611–22.

    CAS  CrossRef  PubMed  Google Scholar 

  65. Kottkamp H, Hugl B, Krauss B, Wetzel U, Fleck A, Schuler G, et al. Electromagnetic versus fluoroscopic mapping of the inferior isthmus for ablation of typical atrial flutter: a prospective randomized study. Circulation. 2000;102:2082–6.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Earley MJ, Showkathali R, Alzetani M, Kistler PM, Gupta D, Abrams DJ, et al. Radiofrequency ablation of arrhythmias guided by non-fluoroscopic catheter location: a prospective randomized trial. Eur Heart J. 2006;27:1223–9.

    PubMed  CrossRef  Google Scholar 

  67. Reddy VY, Malchano ZJ, Neuzil P. Early clinical experience with CARTO-merge for integration of 3D-CT imaging with real-time mapping to guide catheter ablation of atrial fibrillation. Heart Rhythm. 2005;2:S160.

    CrossRef  Google Scholar 

  68. Ernst S, Ouyang F, Linder C, et al. Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation. Circulation. 2004;109(12):1472–5.

    PubMed  CrossRef  Google Scholar 

  69. Ueda A, Suman-Horduna I, Mantziari L, Gujic M, Marchese P, Ho SY, Babu-Narayan SV, Ernst S. Contemporary outcomes of supraventricular tachycardia ablation in congenital heart disease: a single-center experience in 116 patients. Circ Arrhythm Electrophysiol. 2013;6:606–13.

    PubMed  CrossRef  Google Scholar 

  70. Schwagten BK, Szili-Torok T, Rivero-Ayerza M. Usefulness of remote magnetic navigation for ablation of ventricular arrhythmias originating from outflow regions. Neth Heart J. 2009;17:245–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  71. Guarguali S, Cazzoli I, Kempny A, Gatzoulis M, Ernst S. A new technique for zero fluoroscopy atrial fibrillation ablation without the use of intracardiac echocardiography. J Am Coll Cardiol Clin Electrophysiol. 2018;4:1647–8.

    Google Scholar 

  72. Clifton DK, Bremner WJ. The effect of testicular x-irradiation on spermatogenesis in man. A comparison with the mouse. J Androl. 1983;4(6):387–92.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Kumar D, Salian SR, Kalthur G, Uppangala S, Kumari S, Challapalli S, et al. Semen abnormalities, sperm DNA damage and global hypermethylation in health workers occupationally exposed to ionizing radiation. PLoS One. 2013;8(7):e69927.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  74. Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59(3):665–78.

    CAS  PubMed  CrossRef  Google Scholar 

  75. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37(2–4):1–332.

    Google Scholar 

  76. AlTurki A, Proietti R. Remote magnetic navigation versus contact force technology: the two faces of the ablation lesion. Pacing Clin Electrophysiol. 2018;41(5):447–9.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Ernst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nagarajan, D.V., AlTurki, A., Ernst, S. (2019). Radiation Exposure and Safety for the Electrophysiologist. In: Proietti, R., Wang, Y., Yao, Y., Zhong, G., Lin Wu, S., Ayala-Paredes, F. (eds) Cardiac Electrophysiology Without Fluoroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-16992-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16992-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16991-6

  • Online ISBN: 978-3-030-16992-3

  • eBook Packages: MedicineMedicine (R0)