Skip to main content

Clinical Studies of a Purely 3D Navigation in Interventional Managements of Tachyarrhythmia

  • 331 Accesses

Abstract

Catheter ablation is the mainstay of treatment for most tachyarrhythmias. Non-fluoroscopic techniques that allow three-dimensional navigation were developed to facilitate ablation and reduce radiation exposure. Electroanatomic mapping facilitates catheter ablation by keeping a catalog of activation time, voltage, and anatomic location at multiple points simultaneously and displaying them as readily understandable color-coded map superimposed on the cardiac chamber geometry. Electroanatomic mapping systems can also display cardiac anatomy and sites of energy application with much more precision than fluoroscopic localization. This facilitates the targeting of specific anatomic targets. Remote magnetic navigation and contact force sensing technology are significant additions to the electrophysiologists’ armamentarium of tools. Remote magnetic navigation improves catheter positioning and contact force improves the quality of the ablation lesion. Intracardiac echo also assists with catheter localization and is critical for trans-septal puncture with little to no fluoroscopy. The use of purely three-dimensional navigation is safe and feasible for most catheter ablation. Further studies are needed to assess the long-term outcomes of non-fluoroscopic ablation.

Keywords

  • 3D navigation
  • Contact force
  • Electroanatomic mapping

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-16992-3_1
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-16992-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  1. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14(10):e275–444.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  2. AlTurki A, Marshall HJ, Proietti R. Targeting nonpulmonary vein triggers during atrial fibrillation ablation: is the game worth the candle? Curr Opin Cardiol. 2018;33(1):50–7.

    PubMed  CrossRef  Google Scholar 

  3. Nair GM, Nery PB, Redpath CJ, Sadek MM, Birnie DH. Radiation safety and ergonomics in the electrophysiology laboratory: update on recent advances. Curr Opin Cardiol. 2016;31(1):11–22.

    PubMed  CrossRef  Google Scholar 

  4. Sarkozy A, De Potter T, Heidbuchel H, Ernst S, Kosiuk J, Vano E, et al. Occupational radiation exposure in the electrophysiology laboratory with a focus on personnel with reproductive potential and during pregnancy: a European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS). Europace. 2017;19(12):1909–22.

    PubMed  CrossRef  Google Scholar 

  5. Wannagat S, Loehr L, Lask S, Volk K, Karakose T, Ozcelik C, et al. Implementation of a near-zero fluoroscopy approach in interventional electrophysiology: impact of operator experience. J Interv Card Electrophysiol. 2018;51(3):215–20.

    PubMed  CrossRef  Google Scholar 

  6. Hill KD, Einstein AJ. New approaches to reduce radiation exposure. Trends Cardiovasc Med. 2016;26(1):55–65.

    PubMed  CrossRef  Google Scholar 

  7. Heidbuchel H, Wittkampf FH, Vano E, Ernst S, Schilling R, Picano E, et al. Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace. 2014;16(7):946–64.

    PubMed  CrossRef  Google Scholar 

  8. Lo LW, Chen SA. Three-dimensional electroanatomic mapping systems in catheter ablation of atrial fibrillation. Circ J. 2010;74(1):18–23.

    PubMed  CrossRef  Google Scholar 

  9. Nedios S, Sommer P, Bollmann A, Hindricks G. Advanced mapping systems to guide atrial fibrillation ablation: electrical information that matters. J Atr Fibrillation. 2016;8(6):1337.

    PubMed  PubMed Central  Google Scholar 

  10. Christoph M, Wunderlich C, Moebius S, Forkmann M, Sitzy J, Salmas J, et al. Fluoroscopy integrated 3D mapping significantly reduces radiation exposure during ablation for a wide spectrum of cardiac arrhythmias. Europace. 2015;17(6):928–37.

    PubMed  CrossRef  Google Scholar 

  11. AlTurki A, Huynh T, Dawas A, AlTurki H, Joza J, Healey JS, et al. Left atrial appendage isolation in atrial fibrillation catheter ablation: a meta-analysis. J Arrhythm. 2018;34(5):478–84.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  12. AlTurki A, Proietti R. Remote magnetic navigation versus contact force technology: the two faces of the ablation lesion. Pacing Clin Electrophysiol. 2018;41(5):447–9.

    PubMed  CrossRef  Google Scholar 

  13. Kistler PM, Earley MJ, Harris S, Abrams D, Ellis S, Sporton SC, et al. Validation of three-dimensional cardiac image integration: use of integrated CT image into electroanatomic mapping system to perform catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17(4):341–8.

    PubMed  CrossRef  Google Scholar 

  14. Kistler PM, Rajappan K, Jahngir M, Earley MJ, Harris S, Abrams D, et al. The impact of CT image integration into an electroanatomic mapping system on clinical outcomes of catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17(10):1093–101.

    PubMed  CrossRef  Google Scholar 

  15. Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation. 1997;95(6):1611–22.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Gornick CC, Adler SW, Pederson B, Hauck J, Budd J, Schweitzer J. Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation. 1999;99(6):829–35.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Khaykin Y, Oosthuizen R, Zarnett L, Wulffhart ZA, Whaley B, Hill C, et al. CARTO-guided vs. NavX-guided pulmonary vein antrum isolation and pulmonary vein antrum isolation performed without 3-D mapping: effect of the 3-D mapping system on procedure duration and fluoroscopy time. J Interv Card Electrophysiol. 2011;30(3):233–40.

    PubMed  CrossRef  Google Scholar 

  18. de Groot NM, Schalij MJ, Zeppenfeld K, Blom NA, Van der Velde ET, Van der Wall EE. Voltage and activation mapping: how the recording technique affects the outcome of catheter ablation procedures in patients with congenital heart disease. Circulation. 2003;108(17):2099–106.

    PubMed  CrossRef  Google Scholar 

  19. Graham AJ, Orini M, Lambiase PD. Limitations and challenges in mapping ventricular tachycardia: new technologies and future directions. Arrhythmia Electrophysiol Rev. 2017;6(3):118–24.

    CrossRef  Google Scholar 

  20. Da Costa A, Lafond P, Romeyer-Bouchard C, Gate-Martinet A, Bisch L, Nadrouss A, et al. Remote magnetic navigation and arrhythmia ablation. Arch Cardiovasc Dis. 2012;105(8):446–53.

    PubMed  CrossRef  Google Scholar 

  21. Aagaard P, Natale A, Briceno D, Nakagawa H, Mohanty S, Gianni C, et al. Remote magnetic navigation: a focus on catheter ablation of ventricular arrhythmias. J Cardiovasc Electrophysiol. 2016;27(Suppl 1):S38–44.

    PubMed  CrossRef  Google Scholar 

  22. Burkhardt JD. Remote magnetic navigation for ventricular ablation: did the machine win this round? J Interv Card Electrophysiol. 2017;48(1):5–7.

    PubMed  CrossRef  Google Scholar 

  23. Arya A, Zaker-Shahrak R, Sommer P, Bollmann A, Wetzel U, Gaspar T, et al. Catheter ablation of atrial fibrillation using remote magnetic catheter navigation: a case-control study. Europace. 2011;13(1):45–50.

    PubMed  CrossRef  Google Scholar 

  24. Proietti R, Pecoraro V, Di Biase L, Natale A, Santangeli P, Viecca M, et al. Remote magnetic with open-irrigated catheter vs. manual navigation for ablation of atrial fibrillation: a systematic review and meta-analysis. Europace. 2013;15(9):1241–8.

    PubMed  CrossRef  Google Scholar 

  25. Choi MS, Oh Y-S, Jang SW, Kim JH, Shin WS, Youn H-J, et al. Comparison of magnetic navigation system and conventional method in catheter ablation of atrial fibrillation: is magnetic navigation system is more effective and safer than conventional method? Korean Circ J. 2011;41(5):248–52.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  26. Lüthje L, Vollmann D, Seegers J, Dorenkamp M, Sohns C, Hasenfuss G, et al. Remote magnetic versus manual catheter navigation for circumferential pulmonary vein ablation in patients with atrial fibrillation. Clin Res Cardiol. 2011;100(11):1003–11.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Miyazaki S, Shah AJ, Xhaet O, Derval N, Matsuo S, Wright M, et al. Remote magnetic navigation with irrigated tip catheter for ablation of paroxysmal atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(6):585–9.

    PubMed  CrossRef  Google Scholar 

  28. Solheim E, Off MK, Hoff PI, De Bortoli A, Schuster P, Ohm O-J, et al. Remote magnetic versus manual catheters: evaluation of ablation effect in atrial fibrillation by myocardial marker levels. J Interv Card Electrophysiol. 2011;32(1):37–43.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  29. Sorgente A, Chierchia GB, Capulzini L, Yazaki Y, Muller-Burri A, Bayrak F, et al. Atrial fibrillation ablation: a single center comparison between remote magnetic navigation, cryoballoon and conventional manual pulmonary vein isolation. Indian Pacing Electrophysiol J. 2010;10(11):486–95.

    PubMed  PubMed Central  Google Scholar 

  30. Turagam MK, Atkins D, Tung R, Mansour M, Ruskin J, Cheng J, et al. A meta-analysis of manual versus remote magnetic navigation for ventricular tachycardia ablation. J Interv Card Electrophysiol. 2017;49(3):227–35.

    PubMed  CrossRef  Google Scholar 

  31. Gökoğlan Y, Mohanty S, Gianni C, Santangeli P, Trivedi C, Güneş MF, et al. Scar homogenization versus limited-substrate ablation in patients with nonischemic cardiomyopathy and ventricular tachycardia. J Am Coll Cardiol. 2016;68(18):1990–8.

    PubMed  CrossRef  Google Scholar 

  32. Hendriks AA, Akca F, Dabiri Abkenari L, Khan M, Bhagwandien R, Yap SC, et al. Safety and clinical outcome of catheter ablation of ventricular arrhythmias using contact force sensing: consecutive case series. J Cardiovasc Electrophysiol. 2015;26(11):1224–9.

    PubMed  CrossRef  Google Scholar 

  33. Bauernfeind T, Akca F, Schwagten B, de Groot N, Van Belle Y, Valk S, et al. The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias. Europace. 2011;13(7):1015–21.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  34. Dinov B, Schonbauer R, Wojdyla-Hordynska A, Braunschweig F, Richter S, Altmann D, et al. Long-term efficacy of single procedure remote magnetic catheter navigation for ablation of ischemic ventricular tachycardia: a retrospective study. J Cardiovasc Electrophysiol. 2012;23(5):499–505.

    PubMed  CrossRef  Google Scholar 

  35. Szili-Torok T, Schwagten B, Akca F, Bauernfeind T, Abkenari LD, Haitsma D, et al. Catheter ablation of ventricular tachycardias using remote magnetic navigation: a consecutive case-control study. J Cardiovasc Electrophysiol. 2012;23(9):948–54.

    PubMed  CrossRef  Google Scholar 

  36. Zhang F, Yang B, Chen H, Ju W, Kojodjojo P, Cao K, et al. Magnetic versus manual catheter navigation for mapping and ablation of right ventricular outflow tract ventricular arrhythmias: a randomized controlled study. Heart Rhythm. 2013;10(8):1178–83.

    PubMed  CrossRef  Google Scholar 

  37. Di Biase L, Tung R, Szili-Torok T, Burkhardt JD, Weiss P, Tavernier R, et al. MAGNETIC VT study: a prospective, multicenter, post-market randomized controlled trial comparing VT ablation outcomes using remote magnetic navigation-guided substrate mapping and ablation versus manual approach in a low LVEF population. J Interv Card Electrophysiol. 2017;48(3):237–45.

    PubMed  CrossRef  Google Scholar 

  38. Roy K, Gomez-Pulido F, Ernst S. Remote magnetic navigation for catheter ablation in patients with congenital heart disease: a review. J Cardiovasc Electrophysiol. 2016;27(Suppl 1):S45–56.

    PubMed  CrossRef  Google Scholar 

  39. Suman-Horduna I, Babu-Narayan SV, Ernst S. Remote navigation for complex arrhythmia. Arrhythm Electrophysiol Rev. 2013;2(1):53–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  40. Rordorf R, Sanzo A, Gionti V. Contact force technology integrated with 3D navigation system for atrial fibrillation ablation: improving results? Expert Rev Med Devices. 2017;14(6):461–7.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Gerstenfeld EP. Contact force-sensing catheters: evolution or revolution in catheter ablation technology? Circ Arrhythm Electrophysiol. 2014;7(1):5–6.

    PubMed  CrossRef  Google Scholar 

  42. Avitall B, Mughal K, Hare J, Helms R, Krum D. The effects of electrode-tissue contact on radiofrequency lesion generation. Pacing Clin Electrophysiol. 1997;20(12 Pt 1):2899–910.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Shah DC, Namdar M. Real-time contact force measurement: a key parameter for controlling lesion creation with radiofrequency energy. Circ Arrhythm Electrophysiol. 2015;8(3):713–21.

    PubMed  CrossRef  Google Scholar 

  44. Shah DC, Lambert H, Nakagawa H, Langenkamp A, Aeby N, Leo G. Area under the real-time contact force curve (force-time integral) predicts radiofrequency lesion size in an in vitro contractile model. J Cardiovasc Electrophysiol. 2010;21(9):1038–43.

    PubMed  CrossRef  Google Scholar 

  45. Jarman JWE, Panikker S, Das M, Wynn GJ, Ullah W, Kontogeorgis A, et al. Relationship between contact force sensing technology and medium-term outcome of atrial fibrillation ablation: a multicenter study of 600 patients. J Cardiovasc Electrophysiol. 2015;26(4):378–84.

    PubMed  CrossRef  Google Scholar 

  46. Shurrab M, Di Biase L, Briceno DF, Kaoutskaia A, Haj-Yahia S, Newman D, et al. Impact of contact force technology on atrial fibrillation ablation: a meta-analysis. J Am Heart Assoc. 2015;4(9):e002476.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  47. Saliba W, Thomas J. Intracardiac echocardiography during catheter ablation of atrial fibrillation. Europace. 2008;10(Suppl 3):iii42–7.

    PubMed  Google Scholar 

  48. Biermann J, Bode C, Asbach S. Intracardiac echocardiography during catheter-based ablation of atrial fibrillation. Cardiol Res Pract. 2012;2012:921746.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  49. Mitchell-Heggs L, Lellouche N, Deal L, Elbaz N, Hamdaoui B, Castanie JB, et al. Transseptal puncture using minimally invasive echocardiography during atrial fibrillation ablation. Europace. 2010;12(10):1435–8.

    PubMed  CrossRef  Google Scholar 

  50. Shalganov TN, Paprika D, Borbás S, Temesvári A, Szili-Török T. Preventing complicated transseptal puncture with intracardiac echocardiography: case report. Cardiovasc Ultrasound. 2005;3:5.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  51. Gaita F, Guerra PG, Battaglia A, Anselmino M. The dream of near-zero X-rays ablation comes true. Eur Heart J. 2016;37(36):2749–55.

    PubMed  CrossRef  Google Scholar 

  52. Yang L, Sun G, Chen X, Chen G, Yang S, Guo P, et al. Meta-analysis of zero or near-zero fluoroscopy use during ablation of cardiac arrhythmias. Am J Cardiol. 2016;118(10):1511–8.

    PubMed  CrossRef  Google Scholar 

  53. Sadek MM, Ramirez FD, Nery PB, Golian M, Redpath CJ, Nair GM, et al. Completely nonfluoroscopic catheter ablation of left atrial arrhythmias and ventricular tachycardia. J Cardiovasc Electrophysiol. 2019;30:78–88.

    PubMed  CrossRef  Google Scholar 

  54. Deutsch K, Sledz J, Mazij M, Ludwik B, Labus M, Karbarz D, et al. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach. Medicine (Baltimore). 2017;96(25):e6939.

    CrossRef  Google Scholar 

  55. Schoene K, Rolf S, Schloma D, John S, Arya A, Dinov B, et al. Ablation of typical atrial flutter using a non-fluoroscopic catheter tracking system vs. conventional fluoroscopy—results from a prospective randomized study. Europace. 2015;17(7):1117–21.

    PubMed  CrossRef  Google Scholar 

  56. Alvarez M, Tercedor L, Herrera N, Munoz L, Galdeano RS, Valverde F, et al. Cavotricuspid isthmus catheter ablation without the use of fluoroscopy as a first-line treatment. J Cardiovasc Electrophysiol. 2011;22(6):656–62.

    PubMed  CrossRef  Google Scholar 

  57. Kopelman HA, Prater SP, Tondato F, Chronos NA, Peters NS. Slow pathway catheter ablation of atrioventricular nodal re-entrant tachycardia guided by electroanatomical mapping: a randomized comparison to the conventional approach. Europace. 2003;5(2):171–4.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Luani B, Zrenner B, Basho M, Genz C, Rauwolf T, Tanev I, et al. Zero-fluoroscopy cryothermal ablation of atrioventricular nodal re-entry tachycardia guided by endovascular and endocardial catheter visualization using intracardiac echocardiography (Ice&ICE Trial). J Cardiovasc Electrophysiol. 2018;29(1):160–6.

    PubMed  CrossRef  Google Scholar 

  59. Casella M, Pelargonio G, Dello Russo A, Riva S, Bartoletti S, Santangeli P, et al. “Near-zero” fluoroscopic exposure in supraventricular arrhythmia ablation using the EnSite NavX mapping system: personal experience and review of the literature. J Interv Card Electrophysiol. 2011;31(2):109–18.

    PubMed  CrossRef  Google Scholar 

  60. Clark J, Bockoven JR, Lane J, Patel CR, Smith G. Use of three-dimensional catheter guidance and trans-esophageal echocardiography to eliminate fluoroscopy in catheter ablation of left-sided accessory pathways. Pacing Clin Electrophysiol. 2008;31(3):283–9.

    PubMed  CrossRef  Google Scholar 

  61. Scaglione M, Ebrille E, Caponi D, Siboldi A, Bertero G, Di Donna P, et al. Zero-fluoroscopy ablation of accessory pathways in children and adolescents: CARTO3 electroanatomic mapping combined with RF and cryoenergy. Pacing Clin Electrophysiol. 2015;38(6):675–81.

    PubMed  CrossRef  Google Scholar 

  62. Bigelow AM, Smith G, Clark JM. Catheter ablation without fluoroscopy: current techniques and future direction. J Atrial Fibrillation. 2014;6(6):1066.

    Google Scholar 

  63. Casella M, Dello Russo A, Pelargonio G, Del Greco M, Zingarini G, Piacenti M, et al. Near zerO fluoroscopic exPosure during catheter ablAtion of supRavenTricular arrhYthmias: the NO-PARTY multicentre randomized trial. Europace. 2016;18(10):1565–72.

    PubMed  CrossRef  Google Scholar 

  64. Reddy VY, Morales G, Ahmed H, Neuzil P, Dukkipati S, Kim S, et al. Catheter ablation of atrial fibrillation without the use of fluoroscopy. Heart Rhythm. 2010;7(11):1644–53.

    PubMed  CrossRef  Google Scholar 

  65. Razminia M, Demo H, Arrieta-Garcia C, D’Silva OJ, Wang T, Kehoe RF. Nonfluoroscopic ablation of atrial fibrillation using cryoballoon. J Atrial Fibrillation. 2014;7(1):1093.

    Google Scholar 

  66. Bulava A, Hanis J, Eisenberger M. Catheter ablation of atrial fibrillation using zero-fluoroscopy technique: a randomized trial. Pacing Clin Electrophysiol. 2015;38(7):797–806.

    PubMed  CrossRef  Google Scholar 

  67. Huo Y, Christoph M, Forkmann M, Pohl M, Mayer J, Salmas J, et al. Reduction of radiation exposure during atrial fibrillation ablation using a novel fluoroscopy image integrated 3-dimensional electroanatomic mapping system: a prospective, randomized, single-blind, and controlled study. Heart Rhythm. 2015;12(9):1945–55.

    PubMed  CrossRef  Google Scholar 

  68. McCauley MD, Patel N, Greenberg SJ, Molina-Razavi JE, Safavi-Naeini P, Razavi M. Fluoroscopy-free atrial transseptal puncture. Eur J Arrhythm Electrophysiol. 2016;2(2):57–61.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  69. Zhang JQ, Yu RH, Liang JB, Long Y, Sang CH, Ma CS, et al. Reconstruction left atrium and isolation pulmonary veins of paroxysmal atrial fibrillation using single contact force catheter with zero X-ray exposure: a CONSORT study. Medicine (Baltimore). 2017;96(41):e7726.

    CrossRef  Google Scholar 

  70. Sommer P, Bertagnolli L, Kircher S, Arya A, Bollmann A, Richter S, et al. Safety profile of near-zero fluoroscopy atrial fibrillation ablation with non-fluoroscopic catheter visualization: experience from 1000 consecutive procedures. Europace. 2018;20:1952–8.

    PubMed  CrossRef  Google Scholar 

  71. Cano O, Andres A, Osca J, Alonso P, Sancho-Tello MJ, Olague J, et al. Safety and feasibility of a minimally fluoroscopic approach for ventricular tachycardia ablation in patients with structural heart disease: influence of the ventricular tachycardia substrate. Circ Arrhythm Electrophysiol. 2016;9(2):e003706.

    PubMed  CrossRef  Google Scholar 

  72. Wang Y, Chen GZ, Yao Y, Bai Y, Chu HM, Ma KZ, et al. Ablation of idiopathic ventricular arrhythmia using zero-fluoroscopy approach with equivalent efficacy and less fatigue: a multicenter comparative study. Medicine (Baltimore). 2017;96(6):e6080.

    CrossRef  Google Scholar 

  73. Akca F, Bauernfeind T, Witsenburg M, Dabiri Abkenari L, Cuypers JA, Roos-Hesselink JW, et al. Acute and long-term outcomes of catheter ablation using remote magnetic navigation in patients with congenital heart disease. Am J Cardiol. 2012;110(3):409–14.

    PubMed  CrossRef  Google Scholar 

  74. Cosío FG. Atrial flutter, typical and atypical: a review. Arrhythmia Electrophysiol Rev. 2017;6(2):55–62.

    CrossRef  Google Scholar 

  75. Macias R, Uribe I, Tercedor L, Jimenez-Jaimez J, Barrio T, Alvarez M. A zero-fluoroscopy approach to cavotricuspid isthmus catheter ablation: comparative analysis of two electroanatomical mapping systems. Pacing Clin Electrophysiol. 2014;37(8):1029–37.

    PubMed  CrossRef  Google Scholar 

  76. Álvarez M, Tercedor L, Almansa I, Ros N, Galdeano RS, Burillo F, et al. Safety and feasibility of catheter ablation for atrioventricular nodal re-entrant tachycardia without fluoroscopic guidance. Heart Rhythm. 2009;6(12):1714–20.

    PubMed  CrossRef  Google Scholar 

  77. Gist K, Tigges C, Smith G, Clark J. Learning curve for zero-fluoroscopy catheter ablation of AVNRT: early versus late experience. Pacing Clin Electrophysiol. 2011;34(3):264–8.

    PubMed  CrossRef  Google Scholar 

  78. Balli S, Kucuk M, Orhan Bulut M, Kemal Yucel I, Celebi A. Transcatheter cryoablation procedures without fluoroscopy in pediatric patients with atrioventricular nodal reentrant tachycardia: a single-center experience. Acta Cardiol Sin. 2018;34(4):337–43.

    PubMed  PubMed Central  Google Scholar 

  79. Faletti R, Rapellino A, Barisone F, Anselmino M, Ferraris F, Fonio P, et al. Use of oral gadobenate dimeglumine to visualise the oesophagus during magnetic resonance angiography in patients with atrial fibrillation prior to catheter ablation. J Cardiovasc Magn Reson. 2014;16:41.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  80. Sapp JL, Wells GA, Parkash R, Stevenson WG, Blier L, Sarrazin JF, et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N Engl J Med. 2016;375(2):111–21.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed AlTurki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

AlTurki, A., Proietti, R. (2019). Clinical Studies of a Purely 3D Navigation in Interventional Managements of Tachyarrhythmia. In: Proietti, R., Wang, Y., Yao, Y., Zhong, G., Lin Wu, S., Ayala-Paredes, F. (eds) Cardiac Electrophysiology Without Fluoroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-16992-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16992-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16991-6

  • Online ISBN: 978-3-030-16992-3

  • eBook Packages: MedicineMedicine (R0)