Skip to main content

The Demise of Fluoroscopy in Pediatric Electrophysiology

  • 336 Accesses

Abstract

Electrophysiology and catheter ablation in the pediatric population is currently undergoing a rapid evolution. The availability of three-dimensional mapping systems has lead to a significant reduction in radiation exposure for patients and staff. As the technology continues to improve, there is opportunity for radiation to be eliminated from routine procedures. This chapter will review the history of the mapping systems that have been at the forefront thus far, as well as outline approaches to ablating specific arrhythmias without fluoroscopy, from the simplest to the most difficult. Finally, important reasons to pursue a zero-fluoroscopy approach in this population will be discussed.

Keywords

  • Zero fluoroscopy
  • Pediatric ablations
  • 3D mapping

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-16992-3_14
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-16992-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5
Fig. 14.6

References

  1. Kean AC, LaPage MJ, Yu S, Dick M 2nd, Bradley DJ. Patient and procedural correlates of fluoroscopy use during catheter ablation in the pediatric and congenital electrophysiology lab. Congenit Heart Dis. 2015;10(3):281–7.

    PubMed  CrossRef  Google Scholar 

  2. Beels L, Bacher K, De Wolf D, Werbrouck J, Thierens H. Gamma-H2AX foci as a biomarker for patient X-ray exposure in pediatric cardiac catheterization: are we underestimating radiation risks? Circulation. 2009;120(19):1903–9.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Limacher MC, Douglas PS, Germano G, et al. ACC expert consensus document. Radiation safety in the practice of cardiology. American college of cardiology. J Am Coll Cardiol. 1998;31(4):892–913.

    CAS  CrossRef  PubMed  Google Scholar 

  4. Broga D. Ionizing radiation exposure of the population of the united states. National Council on Radiation. 1st edn. Wiley: Hoboken, NJ: 2009. https://doi.org/10.1118/1.3245881.

    CrossRef  Google Scholar 

  5. Kugler JD, Danford DA, Houston K, Felix G. Radiofrequency catheter ablation for paroxysmal supraventricular tachycardia in children and adolescents without structural heart disease. Pediatric EP society, radiofrequency catheter ablation registry. Am J Cardiol. 1997;80(11):1438–43.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Van Hare GF, Javitz H, Carmelli D, et al. Prospective assessment after pediatric cardiac ablation: demographics, medical profiles, and initial outcomes. J Cardiovasc Electrophysiol. 2004;15(7):759–70.

    PubMed  CrossRef  Google Scholar 

  7. Clay MA, Campbell RM, Strieper M, Frias PA, Stevens M, Mahle WT. Long-term risk of fatal malignancy following pediatric radiofrequency ablation. Am J Cardiol. 2008;102(7):913–5.

    PubMed  CrossRef  Google Scholar 

  8. Gellis LA, Ceresnak SR, Gates GJ, Nappo L, Pass RH. Reducing patient radiation dosage during pediatric SVT ablations using an “ALARA” radiation reduction protocol in the modern fluoroscopic era. Pacing Clin Electrophysiol. 2013;36(6):688–94.

    CrossRef  PubMed  Google Scholar 

  9. Drago F, Silvetti MS, Di Pino A, Grutter G, Bevilacqua M, Leibovich S. Exclusion of fluoroscopy during ablation treatment of right accessory pathway in children. J Cardiovasc Electrophysiol. 2002;13(8):778–82.

    CrossRef  PubMed  Google Scholar 

  10. Pass RH, Gates GG, Gellis LA, Nappo L, Ceresnak SR. Reducing patient radiation exposure during paediatric SVT ablations: use of CARTO(R) 3 in concert with “ALARA” principles profoundly lowers total dose. Cardiol Young. 2015;25(5):963–8.

    CrossRef  PubMed  Google Scholar 

  11. Miyake CY, Mah DY, Atallah J, et al. Nonfluoroscopic imaging systems reduce radiation exposure in children undergoing ablation of supraventricular tachycardia. Heart Rhythm. 2011;8(4):519–25.

    PubMed  CrossRef  Google Scholar 

  12. Clark BC, Sumihara K, McCarter R, Berul CI, Moak JP. Getting to zero: impact of electroanatomical mapping on fluoroscopy use in pediatric catheter ablation. J Interv Card Electrophysiol. 2016;46(2):183–9.

    CrossRef  PubMed  Google Scholar 

  13. Tuzcu V. A nonfluoroscopic approach for electrophysiology and catheter ablation procedures using a three-dimensional navigation system. Pacing Clin Electrophysiol. 2007;30(4):519–25.

    CrossRef  PubMed  Google Scholar 

  14. Smith G, Clark JM. Elimination of fluoroscopy use in a pediatric electrophysiology laboratory utilizing three-dimensional mapping. Pacing Clin Electrophysiol. 2007;30(4):510–8.

    CrossRef  PubMed  Google Scholar 

  15. Ergul Y, Tola HT, Kiplapinar N, Akdeniz C, Saygi M, Tuzcu V. Cryoablation of anteroseptal accessory pathways in children with limited fluoroscopy exposure. Pediatr Cardiol. 2013;34(4):802–8.

    CrossRef  PubMed  Google Scholar 

  16. Scaglione M, Ebrille E, Caponi D, et al. Zero-fluoroscopy ablation of accessory pathways in children and adolescents: CARTO3 electroanatomic mapping combined with RF and cryoenergy. Pacing Clin Electrophysiol. 2015;38(6):675–81.

    PubMed  CrossRef  Google Scholar 

  17. Ceresnak SR, Nappo L, Janson CM, Pass RH. Tricking CARTO: cryoablation of supraventricular tachycardia in children with minimal radiation exposure using the CARTO3 system. Pacing Clin Electrophysiol. 2016;39(1):36–41.

    CrossRef  PubMed  Google Scholar 

  18. Scaglione M, Ebrille E, Caponi D, et al. Single center experience of fluoroless AVNRT ablation guided by electroanatomic reconstruction in children and adolescents. Pacing Clin Electrophysiol. 2013;36(12):1460–7.

    CrossRef  PubMed  Google Scholar 

  19. Alvarez M, Tercedor L, Almansa I, et al. Safety and feasibility of catheter ablation for atrioventricular nodal re-entrant tachycardia without fluoroscopic guidance. Heart Rhythm. 2009;6(12):1714–20.

    CrossRef  PubMed  Google Scholar 

  20. Gist K, Tigges C, Smith G, Clark J. Learning curve for zero-fluoroscopy catheter ablation of AVNRT: early versus late experience. Pacing Clin Electrophysiol. 2011;34(3):264–8.

    PubMed  CrossRef  Google Scholar 

  21. Dieks JK, Muller MJ, Schneider HE, et al. Catheter ablation of pediatric focal atrial tachycardia: ten-year experience using modern mapping systems. Pediatr Cardiol. 2016;37(3):459–64.

    PubMed  CrossRef  Google Scholar 

  22. Zambito MP, Samuel BP, Vettukattil JJ, Ratnasamy C. Fluoroless catheter ablation of intraatrial reentrant tachycardia status post fontan procedure: fluoroless catheter ablation in fontan patient. Int J Cardiol. 2015;201:126–8.

    PubMed  CrossRef  Google Scholar 

  23. Clark J, Bockoven JR, Lane J, Patel CR, Smith G. Use of three-dimensional catheter guidance and trans-esophageal echocardiography to eliminate fluoroscopy in catheter ablation of left-sided accessory pathways. Pacing Clin Electrophysiol. 2008;31(3):283–9.

    PubMed  CrossRef  Google Scholar 

  24. Mah DY, Miyake CY, Sherwin ED, et al. The use of an integrated electroanatomic mapping system and intracardiac echocardiography to reduce radiation exposure in children and young adults undergoing ablation of supraventricular tachycardia. Europace. 2014;16(2):277–83.

    PubMed  CrossRef  Google Scholar 

  25. Jan M, Zizek D, Rupar K, et al. Fluoroless catheter ablation of various right and left sided supra-ventricular tachycardias in children and adolescents. Int J Cardiovasc Imaging. 2016;32(11):1609–16.

    CrossRef  PubMed  Google Scholar 

  26. Nagaraju L, Menon D, Aziz PF. Use of 3D electroanatomical navigation (CARTO-3) to minimize or eliminate fluoroscopy use in the ablation of pediatric supraventricular tachyarrhythmias. Pacing Clin Electrophysiol. 2016;39(6):574–80.

    CrossRef  PubMed  Google Scholar 

  27. Wan G, Shannon KM, Moore JP. Factors associated with fluoroscopy exposure during pediatric catheter ablation utilizing electroanatomical mapping. J Interv Card Electrophysiol. 2012;35(2):235–42.

    CrossRef  PubMed  Google Scholar 

  28. Von Bergen NH, Bansal S, Gingerich J, Law IH. Nonfluoroscopic and radiation-limited ablation of ventricular arrhythmias in children and young adults: a case series. Pediatr Cardiol. 2011;32(6):743–7.

    CrossRef  Google Scholar 

  29. Ozyilmaz I, Ergul Y, Akdeniz C, Ozturk E, Tanidir IC, Tuzcu V. Catheter ablation of idiopathic ventricular tachycardia in children using the EnSite NavX system with/without fluoroscopy. Cardiol Young. 2014;24(5):886–92.

    PubMed  CrossRef  Google Scholar 

  30. Akdeniz C, Gul EE, Celik N, Karacan M, Tuzcu V. Catheter ablation of idiopathic right ventricular arrhythmias in children with limited fluoroscopy. J Interv Card Electrophysiol. 2016;46(3):355–60.

    PubMed  CrossRef  Google Scholar 

  31. Giaccardi M, Chiodi L, Del Rosso A, Colella A. ‘Zero’ fluoroscopic exposure for ventricular tachycardia ablation in a patient with situs viscerum inversus totalis. Europace. 2012;14(3):449–50.

    CrossRef  PubMed  Google Scholar 

  32. Bigelow AM, Arnold BS, Padrutt GC, Clark JM. Non-fluoroscopic cardiac ablation of neonates with CHD. Cardiol Young. 2017;27(3):592–6.

    PubMed  CrossRef  Google Scholar 

  33. Stec S, Sledz J, Mazij M, et al. Feasibility of implementation of a “simplified, no-X-ray, no-lead apron, two-catheter approach” for ablation of supraventricular arrhythmias in children and adults. J Cardiovasc Electrophysiol. 2014;25(8):866–74.

    PubMed  CrossRef  Google Scholar 

  34. Roguin A, Goldstein J, Bar O, Goldstein JA. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111(9):1368–72.

    CrossRef  PubMed  Google Scholar 

  35. Szumowski L, Szufladowicz E, Orczykowski M, et al. Ablation of severe drug-resistant tachyarrhythmia during pregnancy. J Cardiovasc Electrophysiol. 2010;21(8):877–82.

    PubMed  Google Scholar 

  36. Wu H, Ling LH, Lee G, Kistler PM. Successful catheter ablation of incessant atrial tachycardia in pregnancy using three-dimensional electroanatomical mapping with minimal radiation. Intern Med J. 2012;42(6):709–12.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Hogarth AJ, Graham LN. Normal heart ventricular tachycardia associated with pregnancy: successful treatment with catheter ablation. Indian Pacing Electrophysiol J. 2014;14(2):79–82.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  38. Raman AS, Sharma S, Hariharan R. Minimal use of fluoroscopy to reduce fetal radiation exposure during radiofrequency catheter ablation of maternal supraventricular tachycardia. Tex Heart Inst J. 2015;42(2):152–4.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Bigelow AM, Crane SS, Khoury FR, Clark JM. Catheter ablation of supraventricular tachycardia without fluoroscopy during pregnancy. Obstet Gynecol. 2015;125(6):1338–41.

    PubMed  CrossRef  Google Scholar 

  40. Chen G, Sun G, Xu R, et al. Zero-fluoroscopy catheter ablation of severe drug-resistant arrhythmia guided by ensite NavX system during pregnancy: two case reports and literature review. Medicine (Baltimore). 2016;95(32):e4487.

    CrossRef  Google Scholar 

  41. Prolic Kalinsek T, Jan M, Rupar K, Razen L, Antolic B, Zizek D. Zero-fluoroscopy catheter ablation of concealed left accessory pathway in a pregnant woman. Europace. 2017;19(8):1384.

    CrossRef  PubMed  Google Scholar 

  42. Kozluk E, Piatkowska A, Kiliszek M, et al. Catheter ablation of cardiac arrhythmias in pregnancy without fluoroscopy: a case control retrospective study. Adv Clin Exp Med. 2017;26(1):129–34.

    PubMed  CrossRef  Google Scholar 

  43. Rossi L, Penela D, Villani GQ. Intracardiac echocardiography catheter-guided zero fluoroscopy transeptal puncture technique for ablation of left-sided accessory pathway in a pregnant woman. Europace. 2017;19(11):1825.

    PubMed  CrossRef  Google Scholar 

  44. Lahiri A, Srinath SC, Chase D, Roshan J. Zero fluoroscopy radiofrequency ablation for typical atrioventricular nodal reentrant tachycardia (AVNRT). Indian Pacing Electrophysiol J. 2017;17(6):180–2.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Bigelow AM, Smith PC, Timberlake DT, et al. Procedural outcomes of fluoroless catheter ablation outside the traditional catheterization lab. Europace. 2017;19(8):1378–84.

    CrossRef  PubMed  Google Scholar 

  46. Ceresnak SR, Dubin AM, Kim JJ, et al. Success rates in pediatric WPW ablation are improved with 3-dimensional mapping systems compared with fluoroscopy alone: a multicenter study. J Cardiovasc Electrophysiol. 2015;26(4):412–6.

    PubMed  CrossRef  Google Scholar 

  47. Tuzcu V. Significant reduction of fluoroscopy in pediatric catheter ablation procedures: long-term experience from a single center. Pacing Clin Electrophysiol. 2012;35(9):1067–73.

    CrossRef  PubMed  Google Scholar 

  48. Solimene F, Donnici G, Shopova G, et al. Trends in fluoroscopy time during radiofrequency catheter ablation of supraventricular tachycardias. Int J Cardiol. 2016;202:124–5.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bigelow, A.M., Clark, J.M. (2019). The Demise of Fluoroscopy in Pediatric Electrophysiology. In: Proietti, R., Wang, Y., Yao, Y., Zhong, G., Lin Wu, S., Ayala-Paredes, F. (eds) Cardiac Electrophysiology Without Fluoroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-16992-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16992-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16991-6

  • Online ISBN: 978-3-030-16992-3

  • eBook Packages: MedicineMedicine (R0)