Skip to main content

Non-fluoroscopic Catheter Ablation of Idiopathic Ventricular Arrhythmias

  • 355 Accesses

Abstract

Ventricular arrhythmia substrates are increasingly ablated using almost always 3-D mapping systems in conjunction with fluoroscopy to safely navigate in the heart chambers; we describe a total non-fluoroscopic approach to address idiopathic ventricular substrates, combining electroanatomical mapping and, when needed, non-ionizing imaging modalities as intracardiac ultrasound.

Keywords

  • Ablation
  • Non-fluoroscopic
  • Ventricular arrhythmias
  • Idiopathic
  • 3-D mapping systems
  • Intracardiac ultrasound

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-16992-3_12
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-16992-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9
Fig. 12.10
Fig. 12.11
Fig. 12.12
Fig. 12.13

References

  1. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Hlatky MA, Granger CB, Hammill SC, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2018;72(14):1677–749.

    PubMed  CrossRef  Google Scholar 

  2. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, Kirchhof P, Kjeldsen K, Kuck KH, Hernandez-Madrid A, Nikolaou N, Norekvål TM, Spaulding C, Van Veldhuisen DJ, ESC Scientific Document Group. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36(41):2793–867.

    PubMed  CrossRef  Google Scholar 

  3. Yamada T, Doppalapudi H, Litovsky SH, McElderry T, Neal Kay G. Challenging radiofrequency catheter ablation of idiopathic ventricular arrhythmias originating from the left ventricular summit near the left main coronary artery. Circ Arrhythm Electrophysiol. 2016;9:e004202.

    PubMed  Google Scholar 

  4. Yang L, Sun G, Chen X, et al. Meta-analysis of zero or near-zero fluoroscopy use during ablation of cardiac arrhythmias. Am J Cardiol. 2016;118:1511–8.

    PubMed  CrossRef  Google Scholar 

  5. Gaita F, Guerra PG, Battaglia A, Anselmino M. The dream of near-zero X-rays ablation comes true. Eur Heart J. 2016;37:2749–55.

    PubMed  CrossRef  Google Scholar 

  6. Casella M, Dello Russo A, Pelargonio G, Del Greco M, Zingarini G, Piacenti M, Di Cori A, Casula V, et al. Near zero fluoroscopic exposure during catheter ablation of supraventricular arrhythmias: the NO-PARTY multicentre randomized trial. Europace. 2016;18:1565–72.

    PubMed  CrossRef  Google Scholar 

  7. Anselmino M, Sillano D, Casolati D, Ferraris F, Scaglione M, Gaita F. A new electrophysiology era: zero fluoroscopy. J Cardiovasc Med (Hagerstown). 2013;14:221–7.

    CrossRef  Google Scholar 

  8. Casella M, Dello Russo A, Russo E, Catto V, Pizzamiglio F, Zucchetti M, Majocchi B, et al. X-ray exposure in cardiac electrophysiology: a retrospective analysis in 8150 patients over 7 years of activity in a modern, large-volume laboratory. J Am Heart Assoc. 2018;7:e008233.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Razminia M, Manankil MF, Eryazici PL, Arrieta-Garcia C, Wang T, D’Silva OJ, Lopez CS, et al. Nonfluoroscopic catheter ablation of cardiac arrhythmias in adults: feasibility, safety, and efficacy. J Cardiovasc Electrophysiol. 2012;23:1078–86.

    PubMed  CrossRef  Google Scholar 

  10. Cabrera JA, Sánchez-Quintana D. Cardiac anatomy: what the electrophysiologist needs to know. Heart. 2013;99(6):417–31.

    PubMed  CrossRef  Google Scholar 

  11. Buckberg GD, Nanda NC, Nguyen C, Kocica MJ. What Is the heart? anatomy, function, pathophysiology, and misconceptions. J Cardiovasc Dev Dis. 2018;5(2):E33.

    PubMed  CrossRef  Google Scholar 

  12. Enriquez A, Saenz LC, Rosso R, Silvestry FE, Callans D, Marchlinski FE, Garcia F. Use of intracardiac echocardiography in interventional cardiology: working with the anatomy rather than fighting it. Circulation. 2018;137:2278–94.

    PubMed  CrossRef  Google Scholar 

  13. Movsowitz C, Schwartzman DS, Callans DJ, et al. Idiopathic right ventricular outflow tract tachycardia: narrowing the anatomic location for successful ablation. Am Heart J. 1996;131:930–6.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Rice K, Simpson J. Three-dimensional echocardiography of congenital abnormalities of the left atrioventricular valve. Echo Res Pract. 2015;2(1):R13–24. https://doi.org/10.1530/ERP-15-0003.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Ho SY. Structure and anatomy of the aortic root. Eur J Echocardiogr. 2009;10(1):i3–10. https://doi.org/10.1093/ejechocard/jen243.

    PubMed  CrossRef  Google Scholar 

  16. Sulieman M, Asirvatham SJ. Ablation above the semilunar valves: when, why and how? Part I. Heart Rhythm. 2008;5:1485–92.

    CrossRef  Google Scholar 

  17. Santangeli P, Hutchinson MD, Supple GE, Callans DJ, Marchlinski FE, Garcia FC. Right atrial approach for ablation of ventricular arrhythmias arising from the left posterior-superior process of the left ventricle. Circ Arrhythm Electrophysiol. 2016;9:e004048.

    PubMed  Google Scholar 

  18. McAlpine WA. Heart and coronary arteries. New York: Springer-Verlag; 1975.

    CrossRef  Google Scholar 

  19. Yamada T, McElderry HT, Doppalapudi H, Okada T, Murakami Y, Yoshida Y, Yoshida N, et al. Idiopathic ventricular arrhythmias originating from the left ventricular summit: anatomic concepts relevant to ablation. Circ Arrhythm Electrophysiol. 2010;3:616–23.

    PubMed  CrossRef  Google Scholar 

  20. Lin CY, Chung FP, Lin YJ, Chong E, Chang SL, Lo LW, Hu YF, et al. Radiofrequency catheter ablation of ventricular arrhythmias originating from the continuum between the aortic sinus of Valsalva and the left ventricular summit: electrocardiographic characteristics and correlative anatomy. Heart Rhythm. 2016;13:111–21.

    PubMed  CrossRef  Google Scholar 

  21. Dixit S, Marchlinski FE. Clinical characteristics and catheter ablation of left ventricular outflow tract tachycardia. Curr Cardiol Rep. 2001;3:305–13.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Van Herendael H, Zado ES, Haqqani H, Tschabrunn CM, Callans DJ, Frankel DS, Lin D, et al. Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers. Heart Rhythm. 2014;11:566–73.

    PubMed  CrossRef  Google Scholar 

  23. Jadonath RL, Schwartzman DS, Preminger MW, et al. Utility of 12-lead electrocardiogram in localizing the origin of right ventricular outflow tract tachycardia. Am Heart J. 1995;130:1107–13.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Sekiguchi Y, Aonuma K, Takahashi A, et al. Electrocardiographic and electrophysiologic characteristics of ventricular tachycardia originating within the pulmonary artery. J Am Coll Cardiol. 2005;45:887–95.

    PubMed  CrossRef  Google Scholar 

  25. Callans DJ, Menz V, Schwartzman D, et al. Repetitive monomorphic tachycardia from the left ventricular outflow tract: electrocardiographic patterns consistent with a left ventricular site of origin. J Am Coll Cardiol. 1997;29:1023–7.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Yamada T, Litovsky SH, Kay GN. The left ventricular ostium: an anatomic concept relevant to idiopathic ventricular arrhythmias. Circ Arrhythmia Electrophysiol. 2008;1:396–404.

    CrossRef  Google Scholar 

  27. Yamada T, Lau YR, Litovsky SH, Thomas McElderry H, Doppalapudi H, Osorio J, Plumb VJ, Neal Kay G. Idiopathic ventricular arrhythmias originating from the aortic root: prevalence, electrocardiographic and electrophysiological characteristics, and results of the radiofrequency catheter ablation. J Am Coll Cardiol. 2008;52:139–47.

    PubMed  CrossRef  Google Scholar 

  28. Santangeli P, Marchlinski FE, Zado ES, Benhayon D, Hutchinson MD, Lin D, Frankel DS, et al. Percutaneous epicardial ablation of ventricular arrhythmias arising from the left ventricular summit: outcomes and electrocardiogram correlates of success. Circ Arrhythm Electrophysiol. 2015;8:337–43.

    PubMed  CrossRef  Google Scholar 

  29. Jauregui Abularach ME, Campos B, Park KM, Tschabrunn CM, Frankel DS, Park RE, Gerstenfeld EP, et al. Ablation of ventricular arrhythmias arising near the anterior epicardial veins from the left sinus of Valsalva region: ECG features, anatomic distance, and outcome. Heart Rhythm. 2012;9:865–73.

    PubMed  CrossRef  Google Scholar 

  30. Nagashima K, Choi EK, Lin KY, Kumar S, Tedrow UB, Koplan BA, Michaud GF, et al. Ventricular arrhythmias near the distal great cardiac vein: challenging arrhythmia for ablation. Circ Arrhythm Electrophysiol. 2014;7:906–12.

    PubMed  CrossRef  Google Scholar 

  31. Kumagai K, Fukuda K, Wakayama Y, Sugai Y, Hirose M, Yamaguchi N, Takase K, et al. Electrocardiographic characteristics of the variants of idiopathic left ventricular outflow tract ventricular tachyarrhythmias. J Cardiovasc Electrophysiol. 2008;19:495–501.

    PubMed  CrossRef  Google Scholar 

  32. Vallès E, Bazan V, Marchlinski FE. ECG criteria to identify epicardial ventricular tachycardia in nonischemic cardiomyopathy. Circ Arrhythm Electrophysiol. 2010;3:63–71.

    PubMed  CrossRef  Google Scholar 

  33. Belhassen B, Rotmensch HH, Laniado S. Response of recurrent sustained ventricular tachycardia to verapamil. Br Heart J. 1981;46(6):679–82.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  34. Lerman BB, Stein KM, Markowitz SM. Mechanisms of idiopathic left ventricular tachycardia. J Cardiovasc Electrophysiol. 1997;8(5):571–83.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Sung RJ, Shapiro WA, Shen EN, Morady F, Davis J. Effects of verapamil on ventricular tachycardias possibly caused by reentry, automaticity, and triggered activity. J Clin Invest. 1983;72:350–60.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  36. Kawamura M, Hsu JC, Vedantham V, Marcus GM, Hsia HH, Gerstenfeld EP, Scheinman MM, et al. Clinical and electrocardiographic characteristics of idiopathic ventricular arrhythmias with right bundle branch block and superior axis: comparison of apical crux area and posterior septal left ventricle. Heart Rhythm. 2015;12:1137–44.

    PubMed  CrossRef  Google Scholar 

  37. Delacey WA, Nath S, Haines DE, et al. Adenosine and verapamil sensitive tachycardia originating from the left ventricle: radiofrequency catheter ablation. Pacing Clin Electrophysiol. 1992;15:2240–4.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Yamada T, Doppalapudi H, McElderry T, Okada T, Murakami Y, Inden Y, Yoshida Y, et al. Electrocardiographic and electrophysiological characteristics in idiopathic ventricular arrhythmias originating from the papillary muscles in left the left ventricle: relevance for catheter ablation. Circ Arrhythm Electrophysiol. 2010;3:324–31.

    PubMed  CrossRef  Google Scholar 

  39. Yamada T, McElderry T, Doppalapudi H, Kay N. Ventricular far-field activity may provide a diagnostic challenge in identifying an origin of ventricular tachycardia arising from the left ventricular papillary muscle. Europace. 2009;11:1403–5.

    PubMed  CrossRef  Google Scholar 

  40. Rivera S, Ricapito MP, Espinoza J, Belardi D, Albina G, Giniger A, Roux JF, et al. Cryoablation for ventricular arrhythmias arising from the papillary muscles of the left ventricle guided by intracardiac echocardiography and image integration. JACC Clin Electrophysiol. 2015;1:509–16.

    PubMed  CrossRef  Google Scholar 

  41. Rivera S, Ricapito MP, Tomas L, Parodi J, Bardera Milina G, Banegas R, Bueti P, et al. Results of cryoenergy and radiofrequency-based catheter ablation for treating ventricular arrhythmias arising from the papillary muscles of the left ventricle, guided by intracardiac echocardiography and image integration. Circ Arrhythm Electrophysiol. 2016;9:e003874.

    PubMed  CrossRef  Google Scholar 

  42. Good E, Desjardins B, Jongnarangsin K, Oral H, Chugh A, Ebinger M, Pelosi F, et al. Ventricular arrhythmias originating from a papillary muscle in patients without prior infarction: a comparison with fascicular arrhythmias. Heart Rhythm. 2008;5:1530–7.

    PubMed  CrossRef  Google Scholar 

  43. Doppalapudi H, Yamada T, McElderry T, Plumb VJ, Epstein A, Kay N. Ventricular tachycardia originating from the posterior papillary muscle in the left ventricle. A distinct clinical syndrome. Circ Arrhythm Electrophysiol. 2008;1:23–9.

    PubMed  CrossRef  Google Scholar 

  44. Naksuk N, Kapa S, Asirvatham SJ. Spectrum of ventricular arrhythmias arising from papillary muscle in the structurally normal heart. Card Electrophysiol Clin. 2016;8:555–65.

    PubMed  CrossRef  Google Scholar 

  45. Enriquez A, Supple GE, Marchlinski FE, Garcia FC. How to map and ablate papillary muscle ventricular arrhythmias. Heart Rhythm. 2017;14:1721–8.

    PubMed  CrossRef  Google Scholar 

  46. Wo HT, Liao FC, Chang PC, Chou CC, Wen MS, Wang CC, Yeh SJ. Circumferential ablation at the base of the left ventricular papillary muscles: a highly effective approach for ventricular arrhythmias originating from the papillary muscles. Int J Cardiol. 2016;220:876–82.

    PubMed  CrossRef  Google Scholar 

  47. Komatsu Y, Nogami A, Kurosaki K, Morishima I, Masuda K, Ozawa T, Kaneshiro T, et al. Fascicular ventricular tachycardia originating from papillary muscles: purkinje network involvement in the reentrant circuit. Circ Arrhythm Electrophysiol. 2017;10:e004549.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Santoro F, Di Biase L, Hranitzky P, Sanchez JE, Santangeli P, Perini AP, Burkhardt JD, et al. Ventricular fibrillation triggered by PVCs from papillary muscles: clinical features and ablation. J Cardiovasc Electrophysiol. 2014;25:1158–64.

    PubMed  CrossRef  Google Scholar 

  49. Crawford T, Mueller G, Good E, Jongnarangsin K, Chugh A, Pelosi F Jr, Ebinger M, et al. Ventricular arrhythmias originating from the papillary muscles in the right ventricle. Heart Rhythm. 2010;7:725–30.

    PubMed  CrossRef  Google Scholar 

  50. Santoro F, Di Biase L, Hranitzky P, Sanchez JE, Santangeli P, Perini AP, Burkhardt JD, et al. Ventricular tachycardia originating from the septal papillary muscle of the right ventricle: electrocardiographic and electrophysiological characteristics. J Cardiovasc Electrophysiol. 2015;26:145–50.

    PubMed  CrossRef  Google Scholar 

  51. Syed FF, Ackerman MJ, McLeod CJ, Kapa S, Mulpuru SK, Sriram CS, Cannon BC, et al. Sites of successful ventricular fibrillation ablation in bileaflet mitral valve prolapse syndrome. Circ Arrhythm Electrophysiol. 2016;9:e004005.

    PubMed  CrossRef  Google Scholar 

  52. Bogun F, Desjardins B, Crawford T, Good E, Jongnarangsin K, Oral H, Chugh A, et al. Post-infarction ventricular arrhythmias originating in papillary muscles. J Am Coll Cardiol. 2008;51:1794–802.

    PubMed  CrossRef  Google Scholar 

  53. Al’Aref SJ, Ip JE, Markowitz SM, Liu CF, Thomas G, Frenkel D, Panda NC, et al. Differentiation of papillary muscle from fascicular and mitral annular ventricular arrhythmias in patients with and without structural heart disease. Circ Arrhythm Electrophysiol. 2015;8:616–24.

    PubMed  CrossRef  Google Scholar 

  54. Gaztañaga L, Marchlinski FE, Betensky BP. Mechanisms of cardiac arrhythmias. Rev Esp Cardiol (Engl Ed). 2012;65:174–85.

    CrossRef  Google Scholar 

  55. Lerman BB, Kenneth SM, Markovitz SM. Mechanisms of idiopathic left ventricular tachycardia. J Cardiovasc Electrophysiol. 1997;8:571–83.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Lamberti F, Di Clemente F, Remoli R, Bellini C, De Santis A, Mercurio M, Dottori S, Gaspardone A. Catheter ablation of idiopathic ventricular tachycardia without the use of fluoroscopy. Int J Cardiol. 2015;190:338–43.

    PubMed  CrossRef  Google Scholar 

  57. Koźluk E, Gawrysiak M, Piątkowska A, Lodziński P, Kiliszek M, Małkowska S, Zaczek R, Piątkowski R, Opolski G, Kozłowski D. Radiofrequency ablation without the use of fluoroscopy—in what kind of patients is it feasible? Arch Med Sci. 2013;9:821–5.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  58. Wang Y, Chen GZ, Yao Y, Bai Y, Chu HM, Ma KZ, Liew R, Liu H, Zhong GQ, Xue YM, Wu SL, Li YF, Zhao CX, Liu QG, Wang L Wang DW. Ablation of idiopathic ventricular arrhythmia using zero-fluoroscopy approach with equivalent efficacy and less fatigue: a multicenter comparative study. Medicine (Baltimore). 2017;96:e6080.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Rivera, S., de la Paz Ricapito, M., Spears, D. (2019). Non-fluoroscopic Catheter Ablation of Idiopathic Ventricular Arrhythmias. In: Proietti, R., Wang, Y., Yao, Y., Zhong, G., Lin Wu, S., Ayala-Paredes, F. (eds) Cardiac Electrophysiology Without Fluoroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-16992-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16992-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16991-6

  • Online ISBN: 978-3-030-16992-3

  • eBook Packages: MedicineMedicine (R0)