Skip to main content

Ablation of Atrial Flutter with Zero Fluoroscopy Approach

  • 338 Accesses

Abstract

Catheter ablation of cardiac arrhythmias has conventionally been performed with the aid of fluoroscopy to direct catheter placement. Unfortunately, the use of fluoroscopy comes with radiation risks to the patient as well as to the electrophysiology lab staff. Newly navigation methods are used to help in mapping and ablation, reducing X-ray exposure to zero or near zero. The aim of the present review is to evaluate the safety and efficacy of radiofrequency ablation (RFA) for atrial flutter performed in a fluoroless manner compared with the traditional method using fluoroscopy.

Keywords

  • Atrial flutter
  • Ablation
  • Fluoroscopy
  • Fluoroless
  • X-ray
  • Safety
  • Efficacy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-16992-3_10
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-16992-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 10.1

References

  1. Heidbuchel H, Wittkampf FH, Vano E, Ernst S, Schilling R, Picano E, et al. Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace. 2014;16:946–64. https://doi.org/10.1093/europace/eut409.

    CrossRef  Google Scholar 

  2. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007;37:1–332.

    Google Scholar 

  3. Vano E, Arranz L, Sastre JM, Moro C, Ledo A, Garate MT, et al. Dosimetric and radiation protection considerations based on some cases of patient skin injuries in interventional cardiology. Br J Radiol. 1998;71:510–6.

    CAS  CrossRef  Google Scholar 

  4. Rehani MM, Ortiz-Lopez P. Radiation effects in fluoroscopically guided cardiac interventions: keeping them under control. Int J Cardiol. 2006;109:147–51.

    CrossRef  Google Scholar 

  5. Park TH, Eichling JO, Schechtman KB, Bromberg BI, Smith JM, Lindsay BD. Risk of radiation induced skin injuries from arrhythmia ablation procedures. Pacing Clin Electrophysiol. 1996;19(9):1363.

    CAS  CrossRef  Google Scholar 

  6. McFadden SL, Mooney RB, Shepherd PH. X-ray dose and associated risks from radiofrequency catheter ablation procedures. Br J Radiol. 2002;75:253–65.

    CAS  CrossRef  Google Scholar 

  7. Kovoor P, Ricciardello M, Collins L, Uther JB, Ross DL. Risk to patients from radiation associated with radiofrequency ablation for supraventricular tachycardia. Circulation. 1998;98:1534–40.

    CAS  CrossRef  Google Scholar 

  8. Calkins H, Niklason L, Sousa J, el-Atassi R, Langberg J, Morady F. Radiation exposure during radiofrequency catheter ablation of accessory atrioventricular connections. Circulation. 1991;84:2376–82.

    CAS  CrossRef  Google Scholar 

  9. Picano E, Vañó E, Rehani MM, Cuocolo A, Mont L, Bodi V, et al. The appropriate and justified use of medical radiation in cardiovascular imaging. A position document of the ESC associations of cardiovascular imaging, percutaneous cardiovascular interventions and electrophysiology. Eur Heart J. 2014;35:665–72.

    CrossRef  Google Scholar 

  10. Lickfett L, Mahesh M, Vasamreddy C, Bradley D, Jayam V, Eldadah Z, et al. Radiation exposure during catheter ablation of atrial fibrillation. Circulation. 2004;110:3003–10.

    CrossRef  Google Scholar 

  11. Rosenthal LS, Mahesh M, Beck TJ, Saul JP, Miller JM, Kay N, et al. Predictors of fluoroscopy time and estimated radiation exposure during radiofrequency catheter ablation procedures. Am J Cardiol. 1998;82:451–8.

    CAS  CrossRef  Google Scholar 

  12. Klein LW, Miller DL, Balter S, Laskey W, Haines D, Norbash A, et al. Occupational health hazards in the interventional laboratory: time for a safer environment. Radiology. 2009;250:538–44.

    CrossRef  Google Scholar 

  13. Kottkamp H, Hindricks G. Catheter ablation of atrial flutter. Thorac Cardiovasc Surg. 1999;47(3):357–61.

    CrossRef  Google Scholar 

  14. Lee G, Sanders P, Kalman JM. Catheter ablation of atrial arrhythmias: state of the art. Lancet. 2012;380(9852):1509–19.

    CrossRef  Google Scholar 

  15. Saoudi N, Cosio F, Waldo A, Chen SA, Lesaka Y, Lesh M, et al. Classification of atrial flutter and regular atrial tachycardia according to electrophysiologic mechanism and anatomic bases: a statement from a joint expert group from the Working Group of Arrhythmias of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. J Cardiovasc Electrophysiol. 2001;12:852–66.

    CAS  CrossRef  Google Scholar 

  16. Olgin JE, Kalman JM, Saxon LA, Lee RJ, Lesh MD. Mechanism of initiation of atrial flutter in humans: site of unidirectional block and direction of rotation. J Am Coll Cardiol. 1997;29(2):376–84.

    CAS  CrossRef  Google Scholar 

  17. Cosio FG, Arribas F, Barbero JM, Kallmeyer C, Goicolea A. Validation of double-spike electrograms as markers of conduction delay or block in atrial flutter. Am J Cardiol. 1988;61(10):775–80.

    CAS  CrossRef  Google Scholar 

  18. Kalman JM, Olgin JE, Saxon LA, Fisher WG, Lee RJ, Lesh MD. Activation and entrainment mapping defines the tricuspid annulus as the anterior barrier in typical atrial flutter. Circulation. 1996;94(3):398–406.

    CAS  CrossRef  Google Scholar 

  19. Olshansky B, Okumura K, Hess PG, Waldo AL. Demonstration of an area of slow conduction in human atrial flutter. J Am Coll Cardiol. 1990;16(7):1639–48.

    CAS  CrossRef  Google Scholar 

  20. Földesi C, Pandozi C, Peichl P. Atrial flutter: arrhythmia circuit and basis for radiofrequency catheter ablation. Ital Heart J. 2003;4:395–403.

    PubMed  Google Scholar 

  21. Yang Y, Cheng J, Bochoeyer A, Hamdan MH, Kowal RC, Page R, et al. Atypical right atrial flutter patterns. Circulation. 2001;103(25):3092–8.

    CAS  CrossRef  Google Scholar 

  22. Bochoeyer A, Yang Y, Cheng J, Lee RJ, Keung EC, Marrouche NF, et al. Surface and electrocardiographic characteristics of right and left atrial flutter. Circulation. 2003;108(1):60–6.

    CrossRef  Google Scholar 

  23. Merino JL, Peinado R, Abello M, Gnoatto M, Vasserot MG, Sobrino JA. Superior vena cava flutter: electrophysiology and ablation. J Cardiovasc Electrophysiol. 2005;16(6):568–75.

    CrossRef  Google Scholar 

  24. Kall JG, Rubenstein DS, Kopp DE, Burke MC, Verdino RJ, Lin AC, et al. Atypical atrial flutter originating in the right atrial free wall. Circulation. 2000;101(3):270–9.

    CAS  CrossRef  Google Scholar 

  25. Wellens HJ. Contemporary management of atrial flutter. Circulation. 2002;106:649–52.

    CrossRef  Google Scholar 

  26. Jaïs P, Shah DC, Haïssaguerre M, Hocini M, Peng JT, Takahashi A, et al. Mapping and ablation of left atrial flutters. Circulation. 2000;101(25):2928–34.

    CrossRef  Google Scholar 

  27. Ohtani K, Yutani C, Nagata S, Koretsune Y, Hori M, Kamada T. High prevalence of atrial fibrosis in patients with dilated cardiomyopathy. J Am Coll Cardiol. 1995;25:1162–9.

    CAS  CrossRef  Google Scholar 

  28. Granada J, Uribe W, Chyou PH, Maassen K, Vierkant R, Smith PN, et al. Incidence and predictors of atrial flutter in the general population. J Am Coll Cardiol. 2000;36(7):2242–6.

    CAS  CrossRef  Google Scholar 

  29. Natale A, Newby KH, Pisanó E, Leonelli F, Fanelli R, Potenza D, et al. Prospective randomized comparison of antiarrhythmic therapy versus first-line radiofrequency ablation in patients with atrial flutter. J Am Coll Cardiol. 2000;35(7):1898–904.

    CAS  CrossRef  Google Scholar 

  30. Da Costa A, Thévenin J, Roche F, Romeyer-Bouchard C, Abdellaoui L, Messier M, et al. Results from the Loire-Ardèche-Drôme-Isère-Puy-de-Dôme (LADIP) trial on atrial flutter, a multicentric prospective randomized study comparing amiodarone and radiofrequency ablation after the first episode of symptomatic atrial flutter. Circulation. 2006;114(16):1676–81.

    CrossRef  Google Scholar 

  31. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC Gguidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37:2893–962. https://doi.org/10.1093/eurheartj/ehw210.

    CrossRef  PubMed  Google Scholar 

  32. Hindricks G, Willems S, Kautzner J, De Chillou C, Wiedemann M, Schepel S, et al. Effect of electroanatomically guided versus conventional catheter ablation of typical atrial flutter on the fluoroscopy time and resource use: a prospective randomized multicenter study. J Cardiovasc Electrophysiol. 2009;20(7):734–40. https://doi.org/10.1111/j.1540-8167.2009.01439.x.

    CrossRef  PubMed  Google Scholar 

  33. Willems S, Weiss C, Ventura R, Rüppel R, Risius T, Hoffmann M, et al. Catheter ablation of atrial flutter guided by electroanatomic mapping (CARTO): a randomized comparison to the conventional approach. J Cardiovasc Electrophysiol. 2000;11(11):1223–30.

    CAS  CrossRef  Google Scholar 

  34. Wagner LK, Eifel PJ, Geise RA. Potential biological effects following high X-ray dose interventional procedures. J Vasc Interv Radiol. 1994;5(1):71–84.

    CAS  CrossRef  Google Scholar 

  35. Lindsay BD, Eichling JO, Ambos HD, Cain ME. Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia. Am J Cardiol. 1992;70(2):218–23.

    CAS  CrossRef  Google Scholar 

  36. Anselme F, Savouré A, Cribier A, Saoudi N. Catheter ablation of typical atrial flutter: a randomized comparison of 2 methods for determining complete bidirectional isthmus block. Circulation. 2001;103(10):1434–9.

    CAS  CrossRef  Google Scholar 

  37. Kottkamp H, Hügl B, Krauss B, Wetzel U, Fleck A, Schuler G, et al. Electromagnetic versus fluoroscopic mapping of the inferior isthmus for ablation of typical atrial flutter: a prospective randomized study. Circulation. 2000;102(17):2082–6.

    CAS  CrossRef  Google Scholar 

  38. Da Costa A, Faure E, Thévenin J, Messier M, Bernard S, Abdel K, et al. Effect of isthmus anatomy and ablation catheter on radiofrequency catheter ablation of the cavotricuspid isthmus. Circulation. 2004;110(9):1030–5.

    CrossRef  Google Scholar 

  39. Razminia M, Manankil MF, Eryazici PL, Arrieta-Garcia C, Wang T, D’Silva OJ, et al. Nonfluoroscopic catheter ablation of cardiac arrhythmias in adults: feasibility, safety, and efficacy. J Cardiovasc Electrophysiol. 2012;23:1078–86.

    CrossRef  Google Scholar 

  40. Saliba W, Thomas J. Intracardiac echocardiography during catheter ablation of atrial fibrillation. Europace. 2008;10(Suppl 3):42–7.

    Google Scholar 

  41. Gaita F, Guerra PG, Battaglia A, Anselmino M. The dream of near-zero X-rays ablation comes true. Eur Heart J. 2016;37(36):2749–55.

    CrossRef  Google Scholar 

  42. Schmidt B, Chun KR, Tilz RR, Koektuerk B, Ouyang F, Kuck KH. Remote navigation systems in electrophysiology. Europace. 2008;10(Suppl 3):iii57–61. https://doi.org/10.1093/europace/eun234.

    CrossRef  PubMed  Google Scholar 

  43. Vollmann D, Lüthje L, Seegers J, Hasenfuss G, Zabel M. Remote magnetic catheter navigation for cavotricuspid isthmus ablation in patients with common-type atrial flutter. Circ Arrhythm Electrophysiol. 2009;2(6):603–10. https://doi.org/10.1161/CIRCEP.109.884411.

    CrossRef  PubMed  Google Scholar 

  44. Shurrab M, Laish-Farkash A, Lashevsky I, Morriello F, Singh SM, Schilling RJ, et al. Three-dimensional localization versus fluoroscopically only guided ablations: a meta-analysis. Scand Cardiovasc J. 2013;47(4):200–9. https://doi.org/10.3109/14017431.2013.797099.

    CrossRef  PubMed  Google Scholar 

  45. Brunelli M, Doroshenko Y, Baldauf T, Ngoli S, Bastian D, Walaschek J, et al. Zero or near zero fluoroscopy for catheter ablation of supraventricular right atrial tachycardia can be achieved with the use of a three-dimensional mapping system. Europace. 2017;19(Suppl_3):iii191.

    CrossRef  Google Scholar 

  46. Casella M, Dello Russo A, Pelargonio G, Del Greco M, Zingarini G, Piacenti M, et al. Near zerO fluoroscopic exPosure during catheter ablAtion of supraventricular arrhYthmias: the NO-PARTY multicentre randomized trial. Europace. 2016;18(10):1565–72.

    CrossRef  Google Scholar 

  47. Earley MJ, Showkathali R, Alzetani M, Kistler PM, Gupta D, Abrams DJ, et al. Radiofrequency ablation of arrhythmias guided by nonfluoroscopic catheter location: a prospective randomized trial. Eur Heart J. 2006;27:1223–122.

    CrossRef  Google Scholar 

  48. Bulava A, Hanis J, Eisenberger M. Catheter ablation of atrial fibrillation using zero-fluoroscopy technique: a randomized trial. Pacing Clin Electrophysiol. 2015;38:797–806.

    CrossRef  Google Scholar 

  49. Sun X, Xu J, Su H, Fan X, Liu F, An C, et al. Near-zero exposure radiofrequency ablation of paroxysmal supraventricular tachycardia guided by EnSiteNavX mapping. Sci Res Essays. 2011;6:5253–60.

    CrossRef  Google Scholar 

  50. Stec S, Sledz J, Mazij M, Ras M, Ludwik B, Chrabaszcz M, et al. Feasibility of implementation of a “simplified, No-X-Ray, no-lead apron, two-catheter approach” for ablation of supraventricular arrhythmias in children and adults. J Cardiovasc Electrophysiol. 2014;25:866–74.

    CrossRef  Google Scholar 

  51. Giaccardi M, Del Rosso A, Guarnaccia V, Ballo P, Mascia G, Chiodi L, et al. Near-zero xray in arrhythmia ablation using a 3-dimensional electroanatomic mapping system: a multicenter experience. Heart Rhythm. 2016;13:150–6.

    CrossRef  Google Scholar 

  52. Seizer P, Bucher V, Frische C, Heinzmann D, Gramlich M, Muller I, et al. Efficacy and safety of zero-fluoroscopy ablation for supraventricular tachycardias: use of optional contact force measurement for zero fluoroscopy ablation in a clinical routine setting. Herz. 2016;41(3):241–5. https://doi.org/10.1007/s00059-015-4358-4.

    CAS  CrossRef  Google Scholar 

  53. Smith G, Clark JM. Elimination of fluoroscopy use in a pediatric electrophysiology laboratory utilizing three-dimensional mapping. Pacing Clin Electrophysiol. 2007;30:510–8.

    CrossRef  Google Scholar 

  54. Alvarez M, Tercedor L, Almansa I, Ros N, Galdeano RS, Burillo F, et al. Safety and feasibility of catheter ablation for atrioventricular nodal re-entrant tachycardia without fluoroscopic guidance. Heart Rhythm. 2009;6:1714–20.

    CrossRef  Google Scholar 

  55. Yang L, Sun G, Chen X, Chen G, Yang S, Guo P, et al. Meta-analysis of zero or near-zero fluoroscopy use during ablation of cardiac arrhythmias. Am J Cardiol. 2016;118:1511–8. https://doi.org/10.1016/j.amjcard.2016.08.014.

    CrossRef  Google Scholar 

  56. Stec S, Deutsch KJ, Karbarz D, Klank-Szafran M, Sledz J, Mazij M, et al. Zero-fluoroscopy approaches the gold standard for catheter ablation of regular supraventricular tachycardias—experience beyond 1500 procedures. Eur Heart J. 2017;38(Supplement):179.

    Google Scholar 

  57. Bigelow AM, Smith PC, Timberlake DT, McNinch NL, Smith GL, Lane JR, et al. Procedural outcomes of fluoroless catheter ablation outside the traditional catheterization lab. Europace. 2017;19(8):1378–84. https://doi.org/10.1093/europace/euw207.

    CrossRef  Google Scholar 

  58. Walsh KA, Galvin J, Keaney J, Keelan E, Szeplaki G. Single Centre experience with a zero-fluoroscopic ablation strategy using a novel magnetic field and impedance-based 3D mapping system for supraventricular tachycardia. Europace. 2017;319:295–6.

    CrossRef  Google Scholar 

  59. Razminia M, Willoughby MC, Demo H, Keshmiri H, Wang T, D'Silva OJ, et al. Fluoroless catheter ablation of cardiac arrhythmias: a 5-year experience. Pacing Clin Electrophysiol. 2017;40(4):425–33. https://doi.org/10.1111/pace.13038.

    CrossRef  Google Scholar 

  60. Macías R, Uribe I, Tercedor L, Jiménez-Jáimez J, Barrio T, Álvarez M. A zero-fluoroscopy approach to cavotricuspid isthmus catheter ablation: comparative analysis of two electroanatomical mapping systems. Pacing Clin Electrophysiol. 2014;37(8):1029–37. https://doi.org/10.1111/pace.12376.

    CrossRef  PubMed  Google Scholar 

  61. Bastian D, Vitali-Serdoz L, Poli S, Walascheck J, Brunelli M, Richter P, et al. Effects of different 3D electro-anatomic mapping systems on fluoroscopy exposure and procedural duration in typical atrial flutter ablation. JACC Clin Electrophysiol. 2017;3(10 Suppl):S3–4.

    CrossRef  Google Scholar 

  62. Schoene K, Rolf S, Schloma D, John S, Arya A, Dinov B, Richter S, Bollmann A, Hindricks G, Sommer P. Ablation of typical atrial flutter using a non-fluoroscopic catheter tracking system vs. conventional fluoroscopy—results from a prospective randomized study. Europace. 2015;17(7):1117–21. https://doi.org/10.1093/europace/euu398.. Epub 2015 Mar 3

    CrossRef  Google Scholar 

  63. Deutsch K, Śledź J, Mazij M, Ludwik B, Labus M, Karbarz D, et al. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach. Medicine (Baltimore). 2017;96(25):e6939. https://doi.org/10.1097/MD.0000000000006939.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Russo, V. et al. (2019). Ablation of Atrial Flutter with Zero Fluoroscopy Approach. In: Proietti, R., Wang, Y., Yao, Y., Zhong, G., Lin Wu, S., Ayala-Paredes, F. (eds) Cardiac Electrophysiology Without Fluoroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-16992-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16992-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16991-6

  • Online ISBN: 978-3-030-16992-3

  • eBook Packages: MedicineMedicine (R0)