Skip to main content

Near-Infrared Reflectance Imaging of Caries Lesions

  • Chapter
  • First Online:
Detection and Assessment of Dental Caries
  • 1400 Accesses

Abstract

Dental enamel becomes increasingly transparent with increasing wavelength, with minimum scattering and absorption near 1300 nm. Due to the higher wavelength of NIR, there is less light scattering in dental enamel and penetration of light 30 times more than light in the visible range. This allows for better contrast between sound enamel and demineralized (carious) enamel. NIR reflectance at wavelengths coincident with higher water absorption produced the greatest range of lesion contrast values and the contrast increased linearly with increasing lesion depth and severity. NIR can distinguish stains from demineralization at higher wavelengths, as signficcant advantage over other methods. NIR is a method more suitable for caries screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simon JC, Lucas SA, Lee RC, Staninec M, Tom H, Chan KH, et al. Near-IR transillumination and reflectance imaging at 1300-nm and 1500–1700-nm for in vivo caries detection. Lasers Surg Med. 2016;48(6):828–36.

    Article  Google Scholar 

  2. Fried D, Glena RE, Featherstone JD, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Opt. 1995;34(7):1278–85.

    Article  Google Scholar 

  3. Jones RS, Fried D, editors. Attenuation of 1310-nm and 1550-nm laser light through sound dental enamel. Lasers in dentistry VIII Proc SPIE, vol. 4610. San Jose; 2002. p. 187–90.

    Google Scholar 

  4. Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt. 1973;12:555–63.

    Article  Google Scholar 

  5. Darling CL, Huynh GD, Fried D. Light scattering properties of natural and artificially demineralized dental enamel at 1310-nm. J Biomed Opt. 2006;11(3):34023.

    Article  Google Scholar 

  6. Jones RS, Huynh GD, Jones GC, Fried D. Near-IR transillumination at 1310-nm for the imaging of early dental caries. Opt Express. 2003;11(18):2259–65.

    Article  Google Scholar 

  7. Jones G, Jones RS, Fried D, editors. Transillumination of interproximal caries lesions with 830-nm light. Lasers in dentistry X SPIE, vol. 5313. San Jose; 2004. p. 17–22.

    Google Scholar 

  8. Buhler C, Ngaotheppitak P, Fried D. Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm. Opt Express. 2005;13(2):573–82.

    Article  Google Scholar 

  9. Staninec M, Lee C, Darling CL, Fried D. In vivo near-IR imaging of approximal dental decay at 1,310 nm. Lasers Surg Med. 2010;42(4):292–8.

    Article  Google Scholar 

  10. Fried D, Featherstone JDB, Darling CL, Jones RS, Ngaotheppitak P, Buehler CM. Early caries imaging and monitoring with near-IR light. Dent Clin North Am. 2005;49(4):771–94.

    Article  Google Scholar 

  11. Hirasuna K, Fried D, Darling CL. Near-IR imaging of developmental defects in dental enamel. J Biomed Opt. 2008;13(4):044011.

    Article  Google Scholar 

  12. Lee C, Lee D, Darling CL, Fried D. Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm. J Biomed Opt. 2010;15(4):047011.

    Article  Google Scholar 

  13. Karlsson L, Maia AMA, Kyotoku BBC, Tranaeus S, Gomes ASL, Margulis W. Near-infrared transillumination of teeth: measurement of a system performance. J Biomed Opt. 2010;15(3):036001–8.

    Article  Google Scholar 

  14. Zakian C, Pretty I, Ellwood R. Near-infrared hyperspectral imaging of teeth for dental caries detection. J Biomed Opt. 2009;14(6):064047.

    Article  Google Scholar 

  15. Almaz EC, Simon JC, Fried D, Darling CL, editors. Influence of stains on lesion contrast in the pits and fissures of tooth occlusal surfaces from 800–1600-nm. Lasers in dentistry XXII Proc SPIE, vol. 96920X; 2016. p. 1–6.

    Google Scholar 

  16. Chung S, Fried D, Staninec M, Darling CL. Multispectral near-IR reflectance and transillumination imaging of teeth. Biomed Opt Express. 2011;2(10):2804–14.

    Article  Google Scholar 

  17. Peers A, Hill FJ, Mitropoulos CM, Holloway PJ. Validity and reproducibility of clinical examination, fibre-optic transillumination, and bite-wing radiology for the diagnosis of small approximal carious lesions. Caries Res. 1993;27:307–11.

    Article  Google Scholar 

  18. Pine CM, ten Bosch JJ. Dynamics of and diagnostic methods for detecting small carious lesions. Caries Res. 1996;30(6):381–8.

    Article  Google Scholar 

  19. Purdell-Lewis DJ, Pot T. A comparison of radiographic and fibre-optic diagnoses of approximal caries lesions. J Dent. 1974;2(4):143–8.

    Article  Google Scholar 

  20. Vaarkamp J, ten Bosch JJ, Verdonschot EH, Bronkhoorst EM. The real performance of bitewing radiography and fiber-optic transillumination in approximal caries diagnosis. J Dent Res. 2000;79(10):1747–51.

    Article  Google Scholar 

  21. Stephen KW, Russell JI, Creanor SL, Burchell CK. Comparison of fibre optic transillumination with clinical and radiographic caries diagnosis. Community Dent Oral Epidemiol. 1987;15(2):90–4.

    Article  Google Scholar 

  22. Staninec M, Douglas SM, Darling CL, Chan K, Kang H, Lee RC, et al. Nondestructive clinical assessment of occlusal caries lesions using near-IR imaging methods. Lasers Surg Med. 2011;43(10):951–9.

    Article  Google Scholar 

  23. Kuhnisch J, Sochtig F, Pitchika V, Laubender R, Neuhaus KW, Lussi A, et al. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Investig. 2015;20(4):821–9.

    Article  Google Scholar 

  24. Sochtig F, Hickel R, Kuhnisch J. Caries detection and diagnostics with near-infrared light transillumination: clinical experiences. Quintessence Int. 2014;45(6):531–8.

    PubMed  Google Scholar 

  25. Angmar-Mansson B, ten Bosch JJ. Optical methods for the detection and quantification of caries. Adv Dent Res. 1987;1(1):14–20.

    Article  Google Scholar 

  26. ten Bosch JJ, van der Mei HC, Borsboom PCF. Optical monitor of in vitro caries. Caries Res. 1984;18:540–7.

    Article  Google Scholar 

  27. Benson PE, Ali Shah A, Robert Willmot D. Polarized versus nonpolarized digital images for the measurement of demineralization surrounding orthodontic brackets. Angle Orthod. 2008;78(2):288–93.

    Article  Google Scholar 

  28. Everett MJ, Colston BW, Sathyam US, Silva LBD, Fried D, Featherstone JDB, editors. Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT). Lasers in dentistry V SPIE, vol. 3593. San Jose; 1999. p. 177–83.

    Google Scholar 

  29. Fried D, Xie J, Shafi S, Featherstone JDB, Breunig T, Lee CQ. Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt. 2002;7(4):618–27.

    Article  Google Scholar 

  30. Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda = 1310-nm. Lasers Surg Med. 2009;41(3):208–13.

    Article  Google Scholar 

  31. Fried WA, Chan KH, Fried D, Darling CL. High contrast reflectance imaging of simulated lesions on tooth occlusal surfaces at near-IR wavelengths. Lasers Surg Med. 2013;45(8):533–41.

    PubMed  PubMed Central  Google Scholar 

  32. Zhang L, Nelson LY, Seibel EJ. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope. J Biomed Opt. 2012;17(7):076019.

    Article  Google Scholar 

  33. Simon JC, Chan KH, Darling CL, Fried D. Multispectral near-IR reflectance imaging of simulated early occlusal lesions: variation of lesion contrast with lesion depth and severity. Lasers Surg Med. 2014;46(3):203–15.

    Article  Google Scholar 

  34. Jablonski-Momeni A, Jablonski B, Lippe N. Clinical performance of the near-infrared imaging system VistaCam iX Proxi for detection of approximal enamel lesions. BDJ Open. 2017;3:17012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fried, D. (2019). Near-Infrared Reflectance Imaging of Caries Lesions. In: Ferreira Zandona, A., Longbottom, C. (eds) Detection and Assessment of Dental Caries. Springer, Cham. https://doi.org/10.1007/978-3-030-16967-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16967-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16965-7

  • Online ISBN: 978-3-030-16967-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics