Skip to main content

Potential Studies of Waterjet Cavitation Peening on Surface Treatment, Fatigue and Residual Stress

  • Conference paper
  • First Online:
Advances in Manufacturing II (MANUFACTURING 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 1886 Accesses

Abstract

Machining is undeniable in the manufacturing firm. In order to meet the emerging needs of engineering applications, new materials are developed and they create a complication in the machining owing to its extensive properties. The manufacturing industries are being pulled to use the unconventional machining to machine these materials. To improve the life of the end product, engineers adopt various technologies and follow different methodologies. Waterjet Peening (WJP) is one among the technologies where the surfaces are hardened by means of high-pressure water thereby provoking the beneficial residual stress into the surface layers for some thickness. WJP is also be called as the green technology because of its various advantages like eco-friendly, non-pollutant, no HAZ, ability to machine any materials, etc., then another unconventional machining. In this paper, the potential study has been carried out on WJP by considering the surface treatment, residual stress, and the fatigue. As WJP is governed by various parameters, the influences of some significant parameters are detailed in this work. Only a considerable amount of work has been exposed on this machining practice. Hence, the researchers have felt that the review of WJP machine will enhance the machine utilization to a greater extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balamurugan, K., Uthayakumar, M., Sankar, S., et al.: Mathematical modeling on multiple variables in machining LaPO4/Y2O3 composite by abrasive waterjet. Int. J. Mach. Mach. Mater. 19, 426–439 (2017)

    Google Scholar 

  2. Folkes, J.: Waterjet-an innovative tool for manufacturing. J. Mater. Process. Technol. 209, 6181–6189 (2009)

    Article  Google Scholar 

  3. Zhang, S., Wu, Y., Wang, Y.A.: A review on abrasive waterjet and wire electrical discharge machining – high speeds. Open Mech. Eng. J. 5, 178–185 (2011)

    Article  Google Scholar 

  4. Azmir, M.A., Ahsan, A.K.: Investigation on glass/epoxy composite surfaces machined by abrasive watergate machining. J. Mater. Process. Technol. 198, 122–128 (2008)

    Article  Google Scholar 

  5. Arola, D., Ramulu, M.: A study of kerf characteristics in abrasive waterjet machining of graphite/epoxy composites. Trans. ASME 118, 256–265 (1996)

    Google Scholar 

  6. Kopac, J., Krajnik, P.: Robust design of flank milling parameters based on Grey-Taguchi method. J. Mater. Process. Technol. 191, 400–403 (2007)

    Article  Google Scholar 

  7. Balamurugan, K., Uthayakumar, M., Sankar, S., et al.: Modeling and surface texturing on surface roughness in machining LaPO4-Y2O3 composite. Mater. Manuf. Process. (2017). https://doi.org/10.1080/10426914.2017.1291956

    Article  Google Scholar 

  8. Balamurugan, K., Uthayakumar, M., Sankar, S., et al.: Effect of abrasive waterjet machining on LaPO4/Y2O3 ceramic matrix composite. J. Aust. Ceram. Soc. (2017). https://doi.org/10.1007/s41779-017-0142-7

    Article  Google Scholar 

  9. Sadasivam, B., Arola, D.: An examination of abrasive waterjet peening with elastic pre-stress and the effects of boundary conditions. Mach. Sci. Technol. 16, 71–95 (2012)

    Article  Google Scholar 

  10. Srivastava, M., Tripathi, R., Hloch, S., et al.: Potential of using water jet peening as a surface treatment process for welded joints. Procedia Eng. (2016). https://doi.org/10.1016/j.proeng.2016.06.694. Epub ahead of print 2016

    Article  Google Scholar 

  11. Azhari, A., Schindler, C., Li, B.: Effect of waterjet peening on aluminum alloy 5005. Int. J. Adv. Manuf. Technol. (2013). https://doi.org/10.1007/s00170-012-4522-4. Epub ahead of print 2013

    Article  Google Scholar 

  12. Azhari, A., Schindler, C., Kerscher, E., et al.: Improving surface hardness of austenitic stainless steel using waterjet peening process. Int. J. Adv. Manuf. Technol. (2012). https://doi.org/10.1007/s00170-012-3962-1. Epub ahead of print 2012

    Article  Google Scholar 

  13. Chillman, A., Ramulu, M., Hashish, M.: Observations of titanium surfaces impinged with ultra-high pressure waterjets. In: American WJTA Conference and Expo, pp. 1–12 (2009)

    Google Scholar 

  14. Barriuso, S., Lieblich, M., Multigner, M., et al.: Roughening of metallic biomaterials by abrasiveless waterjet peening: characterization and viability. Wear (2011). https://doi.org/10.1016/j.wear.2011.01.024. Epub ahead of print 2011

    Article  Google Scholar 

  15. Azhari, A., Schindler, C., Nkoumbou, J., et al.: Surface erosion of carbon steel 1045 during waterjet peening. J. Mater. Eng. Perform. (2014). https://doi.org/10.1007/s11665-014-0932-9. Epub ahead of print 2014

    Article  Google Scholar 

  16. Boud, F., Loo, L.F., Kinnell, P.K.: The impact of plain waterjet machining on the surface integrity of aluminium 7475. Procedia CIRP (2014). https://doi.org/10.1016/j.procir.2014.04.065. Epub ahead of print 2014

    Article  Google Scholar 

  17. Josef, F., Jiri, K., Hlavacek, P., et al.: Erosion of metals by pulsating water jet. Tech. Gaz. 19, 381–386 (2012)

    Google Scholar 

  18. Oka, Y.I., Mihara, S., Miyata, H.: Effective parameters for erosion caused by water droplet impingement and applications to surface treatment technology. Wear (2007). https://doi.org/10.1016/j.wear.2006.11.022. Epub ahead of print 2007

    Article  Google Scholar 

  19. Arola, D., Hall, C.L.: Parametric effects on particle deposition in abrasive waterjet surface treatments. Mach. Sci. Technol. 8, 171–192 (2004)

    Article  Google Scholar 

  20. Kunaporn, S., Ramulu, M., Hashish, M., et al.: Ultra high pressure waterjet peening part I: surface texture. In: WJTA American Waterjet Conference, pp. 1–15 (2001)

    Google Scholar 

  21. Ramulu, M., Kunaporn, S., Arola, D., et al.: Waterjet machining and peening of metals. Trans. ASME 122, 90–95 (2000)

    Google Scholar 

  22. Soyama, H., Yamauchi, Y., Adachi, Y., et al.: High speed observations of the cavitation cloud around a high speed submerged water jet. JSME Int. J. 38, 245–252 (1995)

    Article  Google Scholar 

  23. Soyama, H., Yanauchi, Y., Sato, K., et al.: High-speed observation of ultrahigh-speed submerged water jets. Exp. Therm. Fluid Sci. (1996). https://doi.org/10.1016/0894-1777(95)00124-7. Epub ahead of print 1996

    Article  Google Scholar 

  24. Yamauchi, Y., Soyama, H., Adachi, Y., et al.: Suitable region oh high speed submerged water jets for cutting and peening. JSME Int. J. 38, 31–39 (1995)

    Article  Google Scholar 

  25. Kikuchi, M., Takiguchi, T., Yamada, J., et al.: Evaluation of the efficiency of cleaning dental plaque on titanium using a cavitating jet. J. Biomech. Sci. Eng. (2014). https://doi.org/10.1299/jbse.14-00297. Epub ahead of print 2014

    Article  Google Scholar 

  26. Takakuwa, O., Chiba, A., Soyama, H.: Movement of dislocations in the sub-surface of a polycrystalline metal by cavitation peening observed by transmission electron microscopy. Mater. Sci. Appl. 6, 140–144 (2015)

    Google Scholar 

  27. Soyama, H., Kikuchi, T., Nishikawa, M., Takakuwa, O.: Introduction of compressive residual stress into stainless steel by employing a cavitating jet in air. Surf. Coat. Technol. 205, 3167–3174 (2011). https://doi.org/10.1016/j.surfcoat.2010.11.031

    Article  Google Scholar 

  28. Dong, X., Guo, R.Z., Song, S.W., et al.: Water jet shot peening strengthening surface roughness. Adv. Mater. Res. https://doi.org/10.4028/www.scientific.net/AMR.670.174. Epub ahead of print 2013

    Article  Google Scholar 

  29. Farayibi, P.K., Abioye, T.E., Murray, J.W., et al.: Surface improvement of laser clad Ti-6Al-4 V using plain waterjet and pulsed electron beam irradiation. J. Mater. Process. Technol. (2015). https://doi.org/10.1016/j.jmatprotec.2014.11.035. Epub ahead of print 2015

    Article  Google Scholar 

  30. Daniewicz, S.R., Cummings, S.D.: Characterization of a water peening process. Trans ASME 121, 336–341 (1999)

    Article  Google Scholar 

  31. Rajesh, N., Babu, N.R.: Empirical modelling of water-jet peening of 6063-T6 aluminium alloy. J. Inst. Eng. (India) 86, 22–26 (2005)

    Google Scholar 

  32. Arola, D.D., Mccain, M.L.: Abrasive waterjet peening: a new method of surface preparation for metal orthopedic implants. J. Biomed. Mater. Res. (Appl. Biomater.) 53, 536–546 (2000)

    Article  Google Scholar 

  33. Huang, L., Folkes, J., Kinnell, P., et al.: Mechanisms of damage initiation in a titanium alloy subjected to water droplet impact during ultra-high pressure plain waterjet erosion. J. Mater. Process. Technol. (2012). https://doi.org/10.1016/j.jmatprotec.2012.04.013. Epub ahead of print 2012

    Article  Google Scholar 

  34. Azhari, A., Schindler, C., Hilbert, K., et al.: Influence of waterjet peening and smoothing on the material surface and properties of stainless steel 304. Surf. Coat. Technol. (2014). https://doi.org/10.1016/j.surfcoat.2014.07.013. Epub ahead of print 2014

    Article  Google Scholar 

  35. Ijiri, M., Shimonishi, D., Nakagawa, D., et al.: Evolution of microstructure from the surface to the interior of Cr-Mo steel by water jet peening. Mater. Sci. Appl. (2017). https://doi.org/10.4236/msa.2017.810050. Epub ahead of print 2017

    Article  Google Scholar 

  36. Mahmoudi, A.H., Salahi, F., Ghasemi, A.: Comparison between residual stress induced by waterjet peening and shot peening. In: 29th International Conference on Surface Modification Technologies (SMT30) (2016)

    Google Scholar 

  37. Arola, D., McCain, M.L., Kunaporn, S., et al.: Waterjet and abrasive waterjet surface treatment of titanium: a comparison of surface texture and residual stress. Wear (2001). https://doi.org/10.1016/s0043-1648(01)00826-2. Epub ahead of print 2001

    Article  Google Scholar 

  38. Dongying, J., Vincent, J., Uchiyama, T., et al.: Residual stress improved by water jet peening for a quenched gear. Trans. Mater. Heat Treat. 25, 502–509 (2004)

    Google Scholar 

  39. Rajesh, N., Babu, N.R.: Multidroplet impact model for prediction of residual stresses in water jet peening of materials. Mater. Manuf. Process. 21, 399–409 (2006). https://doi.org/10.1080/10426910500411736

    Article  Google Scholar 

  40. Rajesh, N., Veeraraghavan, S., Babu, N.R.: A novel approach for modelling of water jet peening. Int. J. Mach. Tools Manuf. (2004). https://doi.org/10.1016/j.ijmachtools.2004.01.010. Epub ahead of print 2004

    Article  Google Scholar 

  41. Sadasivam, B., Hizal, A., Park, S., et al.: An evaluation of abrasive waterjet peening with elastic prestress. J. Manuf. Sci. Eng. 131, 1–8 (2009)

    Article  Google Scholar 

  42. Chen, G.Q., Zhang, D., Song, J.H., et al.: Effect of high pressure waterjet peening on surface strengthening properties of 7075-T651 aluminum alloy. Key Eng. Mater. (2008). https://doi.org/10.4028/www.scientific.net/KEM.373-374.828. Epub ahead of print 2008

    Article  Google Scholar 

  43. Hashimoto, T., Osawa, Y., Itoh, S., et al.: Long-term stability of residual stress improvement by water jet peening considering working processes. J. Press Vessel Technol. (2013). https://doi.org/10.1115/1.4023417. Epub ahead of print 2013

    Article  Google Scholar 

  44. Jiang, W., Luo, Y., Wang, H., et al.: Effect of impact pressure on reducing the weld residual stress by water jet peening in repair weld to 304 stainless steel clad plate. J. Press Vessel Technol. (2015). https://doi.org/10.1115/1.4029655. Epub ahead of print 2015

    Article  Google Scholar 

  45. Ohya, T., Okimura, K., Ohta, T., et al.: Residual stress improved by water jet peening for small diameter pipe inner surfaces. Mitsubishi Heavy Industries. Tech. Rev. 37, 52–56 (2000)

    Google Scholar 

  46. Tonshoff, H.K., Kroos, F., Marzenell, C.: High-pressure water peening -a new mechanical surface-strengthening process. Ann. ClRP 46, 113–117 (1997)

    Article  Google Scholar 

  47. Soyama, H.: High-speed observation of a cavitating jet in air. J. Fluids Eng. 127, 1095–1102 (2005)

    Article  Google Scholar 

  48. Han, B., Ju, D.Y.: Compressive residual stress induced by water cavitation peening: a finite element analysis. Mater. Des. 30, 3325–3332 (2008)

    Article  Google Scholar 

  49. Naito, A., Takakuwa, O., Soyama, H.: Development of peening technique using recirculating shot accelerated by water jet. Mater. Sci. Technol. (2012). https://doi.org/10.1179/1743284711y.0000000027. Epub ahead of print 2012

    Article  Google Scholar 

  50. Takakuwa, O., Soyama, H.: Effect of residual stress on the corrosion behavior of austenitic stainless steel. Adv. Chem. Eng. Sci. 5, 62–71 (2015)

    Article  Google Scholar 

  51. Chillman, A., Ramulu, M., Hashish, M.: Waterjet peening and surface preparation at 600 MPa: a preliminary experimental study. J. Fluids Eng. (2007). https://doi.org/10.1115/1.2436580. Epub ahead of print 2007

    Article  Google Scholar 

  52. Colosimo, B.M., Monno, M.: Surface strengthening by waterjet peening. Adv. Manuf. Syst. Technol. 406, 627–634 (1999)

    Google Scholar 

  53. Okimura, K., Konno, T., Narita, M., et al.: Reliability of waterjet peening as residual stress improvement method for alloy 600 PWSCC Mitigation. In: International Conference on Nuclear Engineering, ICONE16, pp. 1–6 (2008)

    Google Scholar 

  54. Qin, M., Ju, D.Y., Oba, R.: Investigation of the influence of incidence angle on the process capability of water cavitation peening. Surf. Coat. Technol. (2006). https://doi.org/10.1016/j.surfcoat.2006.02.006. Epub ahead of print 2006

    Article  Google Scholar 

  55. Nakamura, Y., Ohya, T., Okimura, K., et al.: Residual stress improved by waterjet peening using cavitation for small-diameter pipe inner surfaces. In: International Conference on Nuclear Engineering. Acropolis, Nice, France, 8–12 April 2001

    Google Scholar 

  56. Han, B., Wang, Y.H., Xu, C.L.: Numerical simulation of residual stress field induced by water-jet cavitation peening. Appl. Mech. Mater. (2013). https://doi.org/10.4028/www.scientific.net/AMM.345.312. Epub ahead of print 2013

    Article  Google Scholar 

  57. Odhiambo, D., Soyama, H.: Cavitation shotless peening for improvement of fatigue strength of carbonized steel. Int. J. Fatigue (2003). https://doi.org/10.1016/s0142-1123(03)00121-x. Epub ahead of print 2003

    Article  Google Scholar 

  58. Sekine, Y., Soyama, H.: Evaluation of the surface of alloy tool steel treated by cavitation shotless peening using an eddy current method. Surf. Coat. Technol. (2009). https://doi.org/10.1016/j.surfcoat.2009.02.018. Epub ahead of print 2009

    Article  Google Scholar 

  59. Azhari, A, Schindler, C., Godard, C., et al.: Effect of multiple passes treatment in waterjet peening on fatigue performance. Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2015.11.195. Epub ahead of print 2016

    Article  Google Scholar 

  60. Soyama, H., Kusaka, T., Saka, M.: Peening by the use of cavitation impacts for the improvement of fatigue strength. J. Mater. Sci. Lett. (2001). https://doi.org/10.1023/a:1010947528358. Epub ahead of print 2001

    Article  Google Scholar 

  61. Soyama, H., Saito, K., Saka, M.: Improvement of fatigue strength of aluminum alloy by cavitation shotless peening. J. Eng. Mater. Technol. 124, 135–140 (2002)

    Article  Google Scholar 

  62. Han, B., Ju, D.Y., Jia, W.P.: Influence of water cavitation peening with aeration on fatigue behaviour of SAE1045 steel. Appl. Surf. Sci. (2007). https://doi.org/10.1016/j.apsusc.2007.05.076. Epub ahead of print 2007

    Article  Google Scholar 

  63. Ju, D.Y., Han, B.: Investigation of water cavitation peening-induced microstructures in the near-surface layer of pure titanium. J. Mater. Process. Technol. (2009). https://doi.org/10.1016/j.jmatprotec.2008.12.006. Epub ahead of print 2009

    Article  Google Scholar 

  64. Lieblich, M., Barriuso, S., Ibanez, J., et al.: On the fatigue behavior of medical Ti6Al4V roughened by grit blasting and abrasiveless waterjet peening. J. Mech. Behav. Biomed. Mater. (2016). https://doi.org/10.1016/j.jmbbm.2016.07.011. Epub ahead of print 2016

    Article  Google Scholar 

  65. Dong, X., Yang, W., Zhang, H.L.: Numerical simulation in nozzle outflow of post-mixed water-jet peening. Appl. Mech. Mater. (2013). https://doi.org/10.4028/www.scientific.net/AMM.448-453.1173. Epub ahead of print 2013

    Article  Google Scholar 

  66. Arola, D., Alade, A.E., Weber, W.: Improving fatigue strength of metals using abrasive waterjet peening. Mach. Sci. Technol. (2006). https://doi.org/10.1080/10910340600710105. Epub ahead of print 2006

    Article  Google Scholar 

  67. Kunaporn, S., Ramulu, M., Hashish, M.: Mathematical modeling of ultra high pressure waterjet peening. J. Eng. Mater. Technol. 127(2), 186–191 (2005)

    Article  Google Scholar 

  68. Soyama, H.: Improvement of fatigue strength by using cavitating jets in air and water. J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-007-1535-8. Epub ahead of print 2007

    Article  Google Scholar 

  69. Sato, M., Takakuwa, O., Nakai, M., et al.: Using cavitation peening to improve the fatigue life of titanium alloy Ti-6Al-4 V manufactured by electron beam melting. Mater. Sci. Appl. 7, 181–191 (2016)

    Google Scholar 

  70. Soyama, H., Takeo, F.: Comparison between cavitation peening and shot peening for extending the fatigue life of a duralumin plate with a hole. J. Mater. Process. Technol. (2016). https://doi.org/10.1016/j.jmatprotec.2015.08.012. Epub ahead of print 2016

    Article  Google Scholar 

  71. Soyama, H., Takeo, F., Kumagai, N., et al.: Suppression of fatigue crack propagation of duralumin by cavitation peening. J. Eng. (2015). https://doi.org/10.1049/joe.2015.0066. Epub ahead of print 2015

    Article  Google Scholar 

  72. Takakuwa, O., Takeo, F., Sato, M., et al.: Using cavitation peening to enhance the fatigue strength of duralumin plate containing a hole with rounded edges. Surf. Coat. Technol. (2016). https://doi.org/10.1016/j.surfcoat.2016.08.087. Epub ahead of print 2016

    Article  Google Scholar 

  73. Soyama, H.: The use of cavitation peening to increase the fatigue strength of duralumin plates containing fastener holes. Mater. Sci. Appl. 5, 430–440 (2014)

    Google Scholar 

  74. Soyama, H., Sasaki, K., Odhiambo, D., et al.: cavitation shotless peening for surfaces modification of alloy tool steel. JSME Int. J. 46, 398–403 (2003)

    Article  Google Scholar 

  75. Fukuda, S., Matsui, K., Ishigami, H., et al.: Cavitation peening to improve the fatigue strength of nitrocarburized steel. Fatigue Fract. Eng. Mater. Struct. (2008). https://doi.org/10.1111/j.1460-2695.2008.01273.x. Epub ahead of print 2008

  76. Soyama, H., Macodiyo, D.O., Mall, S.: Compressive residual stress into titanium alloy using cavitation shotless peening method. Tribol. Lett. (2004). https://doi.org/10.1023/b:tril.0000044497.45014.f2. Epub ahead of print 2004

    Article  Google Scholar 

  77. Soyama, H., Macodiyo, D.O.: Fatigue strength improvement of gears using cavitation shotless peening. Tribol. Lett. (2005). https://doi.org/10.1007/s11249-004-1774-7. Epub ahead of print 2005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Slota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, P.M., Balamurugan, K., Uthayakumar, M., Kumaran, S.T., Slota, A., Zajac, J. (2019). Potential Studies of Waterjet Cavitation Peening on Surface Treatment, Fatigue and Residual Stress. In: Gapiński, B., Szostak, M., Ivanov, V. (eds) Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16943-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16943-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16942-8

  • Online ISBN: 978-3-030-16943-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics