Skip to main content

Analysis of the Pulsating Water Jet Maximum Erosive Effect on Stainless Steel

  • Conference paper
  • First Online:
Advances in Manufacturing II (MANUFACTURING 2019)

Abstract

The presented article deals with the analysis of the maximum erosive effect of ultrasonically pulsed water jet on the surface of austenitic stainless steel EN X5CrNi18-10. One stainless steel sample was evaluated. The sample was disintegrated at a traverse speed of v = 0.20 mm s−1, at a pressure of 39 MPa. The influence of the pulsating water jet at maximum erosion was evaluated based on surface and subsurface characteristics. The surface of the sample was evaluated by the surface topography based on roughness profile parameters Rp [µm] and Rv [µm]. The microstructure of the subsurface layer was evaluated by metallographic analysis. By examining the surface disintegrated with a high-efficiency pulsating water jet, massive surface destruction with a significant loss of material was found. The resulting topography of the surface was uneven and was characterized by the formation of depressions and protrusions with great differences in height. The metallographic analysis showed the formation of cold deformation and the formation of defects in the surface layers. The high destructive effect of the ultrasonically enhanced pulsating water jet also confirms material tearing, mostly along the austenitic grain boundaries, to a depth of maximum 100 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Y.Q., Galecki, G., Sen, G.A., Sen, S.Z.: Effects of operating pressure and stand-off distance on coal comminution by waterjet. Physicochem. Probl. Mineral Process. 53(1), 394–401 (2017). https://doi.org/10.5277/ppmp170131

    Article  Google Scholar 

  2. Hloch, S., Hlavacek, J., Vasilko, K., et al.: Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgija 53(4), 537–540 (2017)

    Google Scholar 

  3. Carach, J., Hloch, S., Hlavacek, P., et al.: Hydro-abrasive disintegration of alloy Monel K-500-the influence of technological and abrasive factors on the surface quality. In: International Conference on Manufacturing Engineering and Materials, ICMEM 2016, Book Series: Procedia Engineering, vol. 149, pp. 17–23. Elsevier Science BV (2016). https://doi.org/10.1016/j.proeng.2016.06.633

    Article  Google Scholar 

  4. Duplak, J., Hatala, M., Duplakova, D., et al.: Comprehensive analysis and study of the machinability of a high strength aluminum alloy (EN AW-AlZn5.5MgCu) in the high-feed milling. Adv. Prod. Eng. Manag. 13(4), 455–465 (2018). https://doi.org/10.14743/apem2018.4.303

    Article  Google Scholar 

  5. Carach, J., Lehocka, D., Legutko, S., et al.: Surface roughness of graphite and aluminium alloy after hydro-abrasive machining. In: Advances in Manufacturing, Lecture Notes in Mechanical Engineering, pp. 805–813. Springer (2018). https://doi.org/10.1007/978-3-319-68619-6_78

    Google Scholar 

  6. Sitek, L., Foldyna, J., Soucek, K.: Shaping of rock specimens for testing of uniaxial tensile strength by high speed abrasive water jet: first experience. In: Impact of Human Activity on the Geological Environment, Eurock 2005, pp. 545–549. A.A. Balkema Publisher (2005)

    Google Scholar 

  7. Perec, A., Investigation of limestone cutting efficiency by the abrasive water suspension jet. In: Lecture Notes in Mechanical Engineering, pp. 124–134. Springer (2019). https://doi.org/10.1007/978-3-319-99353-9_14

    Google Scholar 

  8. Yue, Z., Huang, C., Zhu, H., et al.: Optimization of machining parameters in the abrasive waterjet turning of alumina ceramic based on the response surface methodology. Int. J. Adv. Manuf. Technol. 71(9–12), 2107–2114 (2017). https://doi.org/10.1007/s00170-014-5624-y

    Article  Google Scholar 

  9. Bodnarova, L., Valek, J., Sitek, L., Foldyna, J.: Effect of high temperatures on cement composite materials in concrete structures. Acta Geodynamica et Geomater. 10(2), 173–180 (2013)

    Article  Google Scholar 

  10. Hutyrova, Z., Scucka, J., Hloch, S., Hlavacek, P., Zelenak, M.: Turning of wood plastic composites by water jet and abrasive water jet. Int. J. Adv. Manuf. Technol. 84(5–8), 1615–1623 (2016). https://doi.org/10.1007/s00170-015-7831-6

    Article  Google Scholar 

  11. Popan, I.A., Contiu, G., Campbell, I.: Investigation on standoff distance influence on kerf characteristics in abrasive water jet cutting of composite materials. In: 2017 MATEC Web of Conference, vol. 137, Article number 01009 (2017). https://doi.org/10.1051/matecconf/201713701009

    Article  Google Scholar 

  12. Hou, R., Wang, T., Lv, Z., Liu, Y.: Experimental study of the ultrasonic vibration-assisted abrasive waterjet micromachining the quartz glass. Adv. Mater. Sci. Eng. Article number 8904234 (2018). https://doi.org/10.1155/2018/8904234

    Google Scholar 

  13. Botko, F., Hatala, M., Beraxa, P., et al.: determination of CVD coating thickness for shaped surface tool. Tem J.-Technol. Educ. Manag. Inform. 7(2), 428–432 (2018). https://doi.org/10.18421/TEM72-26

    Article  Google Scholar 

  14. Raudensky, M., Horak, A., Horsky, J., Pohanka, M., Kotrbacek, P.: Hydraulic descaling improvement, findings of jet structure on water hammer effect. Revue de Metallurgie-Cahiers d Informations Techniques 104(2), 84–90 (2007). https://doi.org/10.1051/metal:2007133

    Article  Google Scholar 

  15. Luiset, B., Sanchette, F., Billard, A., Schuster, D.: Mechanisms of stainless steels erosion by water droplets. Wear 303(1–2), 459–464 (2013). https://doi.org/10.1016/j.wear.2013.03.045

    Article  Google Scholar 

  16. Foldyna, J., Klich, J., Hlavacek, P., et al.: Erosion of metals by pulsating water jet. Tech. Gaz. 19(2), 381–386 (2012)

    Google Scholar 

  17. Thomas, G.P., Brunton, J.H.: Drop impingement erosion of metals. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. Roy. Soc. Lond. 549–565 (1970). https://doi.org/10.1098/rspa.1970.0022

    Article  Google Scholar 

  18. Zelenak, M., Foldyna, J., Scucka, J., Hloch, S., Riha, Z.: Visualisation and measurement of high-speed pulsating and continuous water jets. Measurement 72, 1–8 (2015). https://doi.org/10.1016/j.measurement.2015.04.022

    Article  Google Scholar 

  19. Ríha, Z., Foldyna, J.: Ultrasonic pulsations of pressure in a water jet cutting tool. Tech. Gaz. 19(3), 487–491 (2012)

    Google Scholar 

  20. Kušnerová, M., Foldyna, J., Sitek, L., et al.: Innovative approach to advanced modulated waterjet technology. Tech. Gaz. 19(3), 475–480 (2012)

    Google Scholar 

  21. Lehocka, D., Klich, J., Foldyna, J., et al.: Copper alloys disintegration using pulsating water jet. Measurement 82, 375–383 (2016). https://doi.org/10.1016/j.measurement.2016.01.014

    Article  Google Scholar 

  22. Lehocká, D., Klich, J., Foldyna, J., et al.: Surface integrity evaluation of brass CW614 N after impact of acoustically excited pulsating water jet. In: International Conference on Manufacturing Engineering and materials, ICMEM 2016, Book Series: Procedia Engineering, vol. 149, pp. 236–244. Elsevier Science BV (2016). https://doi.org/10.1016/j.proeng.2016.06.662

    Article  Google Scholar 

  23. Lehocka, D., Klichova, D., Foldyna, J., et al.: Comparison of the influence of acoustically enhanced pulsating water jet on selected surface integrity characteristics of CW004A copper and CW614 N brass. Measurement 110, 230–238 (2017). https://doi.org/10.1016/j.measurement.2017.07.005

    Article  Google Scholar 

  24. Lehocka, D., Simkulet, V., Legutko, S.: Assessment of deformation characteristics on CW004A copper influenced by acoustically enhanced water jet. In: 5th International Scientific-Technical Conference on Advances in Manufacturing, MANUFACTURING 2017, pp. 717–724. Springer (2018). https://doi.org/10.1007/978-3-319-68619-6_69

    Google Scholar 

  25. Lehocká, D., Botko, F., Simkulet, V., et al.: Study of surface topography of CW004A copper after PWJ disintegration. In: MMS Conference, 2nd EAI International Conference on Management of Manufacturing Systems. ACM (2018). https://doi.org/10.4108/eai.22-11-2017.2274347

  26. Srivastava, M., Hloch, S., Tripathi, R., et al.: Ultrasonically generated pulsed water jet peening of austenitic stainless-steel surfaces. J. Manuf. Processes 32, 455–468 (2018). https://doi.org/10.1016/j.jmapro.2018.03.016

    Article  Google Scholar 

  27. Li, D., Kang, Y., Ding, X.L., Liu, W.C.: Effects of the geometry of impinging surface on the pressure oscillations of self-resonating pulsed waterjet. Adv. Mech. Eng. 9(8), Article number 1687814017720081 (2017). https://doi.org/10.1177/1687814017720081

    Article  Google Scholar 

  28. Sitek, L., Foldyna, J., Martinec, P., et al.: Use of pulsating water jet technology for removal of concrete in repair of concrete structures. Baltic J. Road Bridge Eng. 6(4), 235–242 (2011). https://doi.org/10.3846/bjrbe.2011.30

    Article  Google Scholar 

  29. Foldyna, V., Foldyna, J., Klichova, D., Klich, J., Hlavacek, P., et al.: Effects of continuous and pulsating water jet on CNT/concrete composite. Strojniski Vjesnik-J. Mech. Eng. 63(10), 583–589 (2017). https://doi.org/10.5545/sv-jme.2017.4357

    Article  Google Scholar 

  30. Foldyna, J., Sitek, L., Martinec, P., et al.: Rock cutting by pulsing water jets. In: Impact of Human Activity on the Geological Environment, Eurock 2005, pp. 129–134. A.A. Balkema Publisher (2005)

    Google Scholar 

  31. Dehkhoda, S., Hood, M.: An experimental study of surface and sub-surface damage in pulsed water-jet breakage of rocks. Int. J. Rock Mech. Min. Sci. 63, 138–147 (2013). https://doi.org/10.1016/j.ijrmms.2013.08.013

    Article  Google Scholar 

  32. Liu, Y., Wei, J.P., Ren, T., Lu, Z.H.: Experimental study of flow field structure of interrupted pulsed water jet and breakage of hard rock. Int. J. Rocks Min. Sci. 78, 253–261 (2015). https://doi.org/10.1016/j.ijrmms.2015.06.005

    Article  Google Scholar 

  33. Hnizdil, M., Raudensky, M.: Descaling by pulsating water jet. In: METAL 2010 - 19th International Conference on Metallurgy and Materials, pp. 209–213. Tanger LTD (2010)

    Google Scholar 

  34. Klich, J., Klichova, D., Hlavacek, P.: Effects of pulsating water jet on aluminium alloy with variously modified surface. Tech. Gaz. 24(2), 341–345 (2017). https://doi.org/10.17559/TV-20140219100749

    Article  Google Scholar 

  35. Hloch, S., Srivastava, M., Krolczyk, J.B., et al.: Strengthening effect after disintegration of stainless steel using pulsating water jet. Tech. Gaz. 25(4), 1075–1079 (2018). https://doi.org/10.17559/TV-20170327134630

    Article  Google Scholar 

  36. Stoye, H., Koehler, H., Mauermann, M., Majschak, J.P.: Investigations to increase cleaning efficiency with pulsed liquid jet. Chem. Ing. Tec. 86(5), 707–713 (2014). https://doi.org/10.1002/cite.201300047

    Article  Google Scholar 

  37. Augustin, W., Fuchs, T., Foste, H., Scholer, M., Majschak, J.P., Scholl, S.: Pulsed flow for enhanced cleaning in food processing. Food Bioprod. Process. 88(C4), 384–391 (2010). https://doi.org/10.1016/j.fbp.2010.08.007

    Article  Google Scholar 

  38. Lehocka, D., Klich, J., Botko, F., Foldyna, J., et al.: Pulsating water jet erosion effect on a brass flat solid surface. Int. J. Adv. Manuf. Technol. 97(1–4), 1099–1112 (2018). https://doi.org/10.1007/s00170-018-1882-4

    Article  Google Scholar 

  39. Krolczyk, G.M., Maruda, R.W., Krolczyk, J.B., et al.: Parametric and nonparametric description of the surface topography in the dry and MQCL cutting conditions. Measurement 121, 225–239 (2018). https://doi.org/10.1016/j.measurement.2018.02.052

    Article  Google Scholar 

  40. Hyland, C.W.L., Ouwejan, A.: Fatigue of reinforcing bars during hydro-demolition. In: 6th International Conference on Fracture Fatigue and Wear (FFW). IOP Publishing (2017). https://doi.org/10.1088/1742-6596/843/1/012033. Journal of Physics Conference Series, vol. 843, Article number 0102033

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under the contract no. APVV-17-0490. This work was further supported by projects: VEGA 1/0096/18, KEGA č. 030TUKE-4/2017 and by the Ministry of Industry and Trade of the Czech Republic projects No. FV 10446 and FV 30233. The experiments were conducted with the support of the Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use - Sustainability Program, reg. no. LO1406 financed by the Ministry of Education, Youth, and Sports of the Czech Republic, and supported by a project for the long-term conceptual development of the research institution RVO: 68145535. This publication is the result of the Project implementation: University Science Park TECHNICOM for innovative applications with the support of knowledge technologies - Phase II, ITMS2014+: 313011D232, supported by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominika Lehocka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehocka, D. et al. (2019). Analysis of the Pulsating Water Jet Maximum Erosive Effect on Stainless Steel. In: Gapiński, B., Szostak, M., Ivanov, V. (eds) Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16943-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16943-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16942-8

  • Online ISBN: 978-3-030-16943-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics