Skip to main content

The Influence of Technological Parameters on Cutting Force Components in Milling of Magnesium Alloys with PCD Tools and Prediction with Artificial Neural Networks

  • Conference paper
  • First Online:
Advances in Manufacturing II (MANUFACTURING 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Cutting force components determined experimentally in milling of AZ91HP and AZ31 magnesium alloys with a PCD milling were compared with the data from simulation with neural networks. The process was carried out at fixed tool geometry, workpiece strength properties, technological machine properties, radial and axial depth of cut. We monitored how the change of specific technological parameters (vc, fz) affects the cutting force components Fx, Fy and Fz. Machining tests have shown a significant influence of technological parameters on the observed cutting forces and their amplitudes. The simulations with Statistica Neural Network software involved two types of neural networks: MLP (Multi-Layered Perceptron) and RBF (Radial Basis Function). The results of our present and former studies in the field are highly important for the safety of magnesium alloy machining (stability) and plastic deformation of the workpiece excessive cutting forces and temperature in the cutting area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamski, W.: Manufacturing development strategies in aviation industry. Adv. Manuf. Sci. Technol. 34(3), 73–84 (2010)

    Google Scholar 

  2. Rusinek, R., Weremczuk, A., Warminski, J.: Dynamics aspect of chatter suppression in milling, 11th World Congress on Computational Mechanics, WCCM 2014. In: 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD, pp. 3056–3067 (2014)

    Google Scholar 

  3. Rusinek, R., Zaleski, K.: Dynamics of thin-walled element milling expressed by recurrence analysis. Meccanica 51(6), 1275–1286 (2015). https://doi.org/10.1007/s11012-015-0293-y

    Article  Google Scholar 

  4. Kuczmaszewsk, J., Zagórski, I., Zgórniak, P.: Thermographic study of chip temperature in high-speed dry milling Magnesium alloys. Manag. Prod. Eng. Rev. 7(2), 86–92 (2016). https://doi.org/10.1515/mper-2016-0020

    Article  Google Scholar 

  5. Oczoś, K.E., Kawalec, A.: Processing Light Metals. PWN, Warsaw (2012). (in Polish)

    Google Scholar 

  6. Dziubinska, A., Gontarz, A., Zagórski, I.: Qualitative research on AZ31 magnesium alloy aircraft brackets with a triangular rib produced by a new forging method. Aircraft Eng. Aerospace Technol. 90(3), 482–488 (2018). https://doi.org/10.1108/aeat-09-2016-0160

    Article  Google Scholar 

  7. Zagórski, I., Kulisz, M., Semeniuk, A.: Artificial neural network modelling of cutting force components in milling. In: ITM Web of Conferences, vol. 15, p. 02001 (2017). https://doi.org/10.1051/itmconf/20171502001

    Article  Google Scholar 

  8. Lipski, J., Zaleski, K.: Optimisation of milling parameters using neural network. In: ITM Web Conference, vol. 15, p. 01005 (2017). https://doi.org/10.1051/itmconf/20171501005

    Article  Google Scholar 

  9. Danis, I., Monies, F., Lagarrigue, P., Wojtowicz, N.: Cutting forces and their modelling in plunge milling of magnesium-rare earth alloys. Int. J. Adv. Manuf. Technol. 84(9–12), 1801–1820 (2016). https://doi.org/10.1007/s00170-015-7826-3

    Article  Google Scholar 

  10. Monies, F., Danis, I., Lagarrigue, P., Gilles, P., Rubio, W.: Balancing of the transversal cutting force for pocket milling cutters: application for roughing a magnesium-rare earth alloy. Int. J. Adv. Manuf. Technol. 89(1–4), 45–64 (2016). https://doi.org/10.1007/s00170-016-9011-8

    Article  Google Scholar 

  11. Saptaji, K., Gebremariam, M.A., Azhari, M.A.B.: Machining of biocompatible materials: a review. Int. J. Adv. Manuf. Technol. 97(5–8), 2255–2292 (2018). https://doi.org/10.1007/s00170-018-1973-2

    Article  Google Scholar 

  12. Józwik, J., Mika, D., Dziedzic, K.: Vibration of thin walls during cutting process of 7075 T651 aluminium alloy. Manuf. Technol. 16(1), 113–120 (2016)

    Google Scholar 

  13. Monies, F., Danis, I., Bes, C., Cafieri, S., Mongeau, M.: A new machining strategy for roughing deep pockets of magnesium-rare earth alloys. Int. J. Adv. Manuf. Technol. 92, 3883–3901 (2017). https://doi.org/10.1007/s00170-017-0444-5

    Article  Google Scholar 

  14. Fang, F.Z., Lee, L.C., Liu, X.D.: Mean flank temperature measurement in high speed dry cutting. J. Mater. Process. Technol. 167, 119–123 (2005)

    Article  Google Scholar 

  15. Akyüz, B.: Comparison of the machinability and wear properties of magnesium alloys. Int. J. Adv. Manuf. Technol. 75(9–12), 1735–1742 (2014). https://doi.org/10.1007/s00170-014-6256-y

    Article  Google Scholar 

  16. Kuczmaszewski, J., Login, W., Piesko, P., Zawada-Michalowska, M.: Assessment of the accuracy of high-speed machining of thin-walled EN AW-2024 aluminium alloy elements using carbide milling cutter and with PCD blades. In: Advances in Manufacturing, pp. 671–680. LNME. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-68619-6_64

    Google Scholar 

  17. Zgórniak, P., Grdulska, A.: Investigation of temperature distribution during milling process of AZ91HP magnesium alloys. Mech. Mech. Eng. 16(1), 33–40 (2012)

    Google Scholar 

  18. Zgórniak, P., Stachurski, W., Ostrowski, D.: Application of thermographic measurements for the determination of the impact of selected cutting parameters on the temperature in the workpiece during milling process. Strojniski Vestnik/J. Mech. Eng. 62(11), 657–664 (2016). https://doi.org/10.5545/sv-jme.2015.3259

    Article  Google Scholar 

  19. Kaining, S., Junxue, R., Dinghua, Z., Zhengyi, Z., Xinchun, H.: Tool wear behaviors and its effect on machinability in dry high-speed milling of magnesium alloy. Int. J. Adv. Manuf. Technol. 90, 3265–3273 (2017). https://doi.org/10.1007/s00170-016-9645-6

    Article  Google Scholar 

  20. Sivam, S.P.S.S., Bhat, M.D.J., Natarajan, S., Chauhan, N.: Analysis of residual stresses, thermal stresses, cutting forces and other output responses of face milling operation on ZE41 Magnesium alloy. Int. J. Mod. Manuf. Technol. 10(1), 92–101 (2018)

    Google Scholar 

  21. Kuczmaszewski, J., Pieśko, P.: Wear of milling cutters resulting from high silicon aluminium alloy cast AlSi21CuNi machining. Maintenance Reliab. 16(1), 37–41 (2014)

    Google Scholar 

  22. Fu, Z.T., Yang, W.Y., Wang, X.L., Leopold, J.: Analytical modelling of milling forces for helical end milling based on a predictive machining theory. In: 15th CIRP Conference on Modelling of Machining Operations (15th Cmmo), vol. 31, pp. 258–263 (2015). https://doi.org/10.1016/j.procir.2015.03.013

    Article  Google Scholar 

  23. Salguero, J., Batista, M., Calamaz, M., Girot, F., Marcos, M.: Cutting forces parametric model for the dry high speed contour milling of aerospace Aluminium alloys. Procedia Eng. 63, 735–742 (2013). https://doi.org/10.1016/j.proeng.2013.08.215

    Article  Google Scholar 

  24. Shi, K., Zhang, D., Ren, J., Yao, Ch., Huang, X.: Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool. Adv. Mech. Eng. 8(1), 1–9 (2016). https://doi.org/10.1177/1687814016628392

    Article  Google Scholar 

  25. Weremczuk, A., Rusinek, R., Warminski, J.: Bifurcation and stability analysis of a nonlinear milling process. In: AIP Conference Proceedings, p. 100008 (1922). https://doi.org/10.1063/1.5019093

  26. Kilickap, E., Yardimeden, A., Celik, Y.H.: Mathematical modelling and optimization of cutting force, tool wear and surface roughness by using artificial neural network and response surface methodology in milling of Ti-6242S. Appl. Sci.-Basel 7(10), 1064 (2017). https://doi.org/10.3390/app7101064

    Article  Google Scholar 

  27. Zagórski, I., Kuczmaszewski, J.: Temperature measurements in the cutting zone, mass, chip fragmentation and analysis of chip metallography images during AZ31 and AZ91HP magnesium alloy milling. Aircraft Eng. Aerospace Technol. 90(3), 496–505 (2018). https://doi.org/10.1108/AEAT-12-2015-0254

    Article  Google Scholar 

  28. Szaleniec, M.: Neural Networks and Multiple Regression - How to Curb Complexity in Scientific Research, StatSoft Poland, pp. 69–85 (2008). https://media.statsoft.pl/_old_dnn/downloads/sieci%20neuronowe.pdf. Accessed 5 Oct 2018. (in Polish)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ireneusz Zagórski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zagórski, I., Kulisz, M. (2019). The Influence of Technological Parameters on Cutting Force Components in Milling of Magnesium Alloys with PCD Tools and Prediction with Artificial Neural Networks. In: Gapiński, B., Szostak, M., Ivanov, V. (eds) Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16943-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16943-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16942-8

  • Online ISBN: 978-3-030-16943-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics