Skip to main content

Fabrication of Biodegradable Mg Alloy Bone Scaffold Through Electrical Discharge µ-Drilling Route

  • Conference paper
  • First Online:
Advances in Manufacturing II (MANUFACTURING 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Magnesium alloys based materials are gaining popularity for bone tissue engineering as they are biocompatible, bioresorbable and shows high osteoblast activities in biological environment. In present work, perforated structures are produced using electrical discharge drilling (EDD), with an attempt to fabricate Mg alloy based biodegradable scaffold for bone tissue engineering. Using appropriate EDD parameters and tubular electrode of diameter 300 µm, micro holes of diameter 408 µm are produced in ZM21 alloy and two different types of perforated structures are obtained with porosity of 22% and 34%. These two perforated structures are compared with solid sample in terms of apatite formation, weight gain and loss of load bearing capacity after immersion in simulated body fluid (SBF) media. After 21 days of immersion test in SBF media, apatite formation in perforated structure with interconnected holes (porosity 34%) is highest, resulting into highest weight gain of 6.23%, for this sample, whereas, solid sample shows negligible weight gain of 0.58%. The loss in mechanical load bearing capacity is found lowest at 5.58% in scaffold having interconnected holes (with porosity 34%). Thus, interconnected perforated Mg alloy structures having well defined micro pores and pore density can be designed and fabricated for biodegradable scaffold application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipi, M., Mahapatro, A., Gomes, A.S.: Fabrication of magnesium-based metallic scaffolds for bone tissue engineering. Mater. Technol. 33(2), 173–182 (2018)

    Article  Google Scholar 

  2. Yunhui, C., Frith, J.E., Manshadi, A.D., Attar, H., Kent, D., Soro, N.D.M., et al.: Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 75, 169–174 (2017)

    Article  Google Scholar 

  3. Ratner, B.D., Hoffman, A.S., Schoen, F.J., et al.: Biomaterials Science. Academic Press, London (2013)

    Google Scholar 

  4. Vats, A., Tolley, N.S., Polak, J.M., Gough, J.E.: Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin. Otolaryngol. Allied Sci. 28(3), 165–172 (2003)

    Article  Google Scholar 

  5. Reed, A.M., Gilding, D.K.: Biodegradable polymers for use in surgery poly (glycolic)/ poly (lactic acid) homo and copolymers: 2: in vitro degradation. Polymer 22(4), 494–498 (1981)

    Article  Google Scholar 

  6. Ma, P.X., Langer, R.: Degradation, structure and properties of fibrous nonwoven poly (glycolic acid) scaffolds for tissue engineering. MRS Online Proceedings Library Archive, vol. 394 (1995)

    Google Scholar 

  7. Witte, F., Ulrich, H., Rudert, M., Willbold, E.: Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response. J. Biomed. Mater. Res., Part A 81(3), 748–756 (2007)

    Article  Google Scholar 

  8. Kumar, K., Gill, R.S., Batra, U.: Challenges and opportunities for biodegradable magnesium alloy implants. Mater. Technol. 33(2), 153–172 (2018)

    Article  Google Scholar 

  9. Staiger, M.P., Alexis, M.P., Huadmai, J., Dias, G.: Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9), 1728–1734 (2006)

    Article  Google Scholar 

  10. Mahapatro, A., Kumar, S.S.: Determination of ionic liquid and magnesium compatibility via microscopic evaluations. J. Adv. Microsc. Res. 10(2), 89–92 (2015)

    Article  Google Scholar 

  11. Bakhsheshi-Rad, H.R., Idris, M.H., Abdul-Kadir, M.R., et al.: Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater. Des. 53, 283–292 (2014)

    Article  Google Scholar 

  12. Nan, G.X., Zheng, Y.F.: A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China 4(2), 111–115 (2010)

    Article  Google Scholar 

  13. Yu, S., Zhang, B., Wang, Y., Geng, L., Jiao, X.: Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Mater. Des. 34, 58–64 (2012)

    Article  Google Scholar 

  14. Erlin, Z., Yin, D., Xu, L., Yang, L., Yang, K.: Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater. Sci. Eng., C 29(3), 987–993 (2009)

    Article  Google Scholar 

  15. Mengqi, C., Li, Z., Liu, J., Li, S.: Effect of Sr on microstructure, tensile properties and wear behavior of as-cast Mg–6Zn–4Si alloy. Mater. Des. 53, 430–434 (2014)

    Article  Google Scholar 

  16. Xin, Y.J., Jiao, Y.P., Yin, Q.S., Zhang, Y., Zhang, T.: Calcium phosphate coating on magnesium alloy by biomimetic method: investigation of morphology, composition and formation process. Front. Mater. Sci. China 2(2), 149 (2008)

    Article  Google Scholar 

  17. Witte, F., Hort, N., Vogt, C., Cohen, S., Ulrich, K., et al.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12(5–6), 63–72 (2008)

    Article  Google Scholar 

  18. Boehlert, C.J., Knittel, K.: The microstructure, tensile properties, and creep behavior of Mg–Zn alloys containing 0–4.4 wt.% Zn. Mater. Sci. Eng., A 417(1–2), 315–321 (2006)

    Article  Google Scholar 

  19. Khan, S.A., Miyashita, Y., Mutoh, Y., Sajuri, Z.B.: Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys. Mater. Sci. Eng., A 420(1–2), 315–321 (2006)

    Article  Google Scholar 

  20. Carlson, B.E., Jones, J.W.: The metallurgical aspects of the corrosion behaviour of cast Mg–Al alloys. Light Met. Process. Appl. 833–847 (1993)

    Google Scholar 

  21. Polmer, I.J.: 2nd Mg Conference DGM Informationsgesellschaft, p. 201, Germany (1992)

    Google Scholar 

  22. Götz, H.E., Müller, M., Emmel, A., Holzwarth, U., Erben, R.G., Stangl, R.: Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterial 25(18), 4057–4064 (2004)

    Article  Google Scholar 

  23. Yoshinori, K., Jin, Q., Takita, H.: Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. JBJS 83, S1–S105 (2001)

    Google Scholar 

  24. Wen, C.E., Yamada, Y., Shimojima, K., Chino, Y., Hosokawa, H., Mabuchi, M.: Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater. Lett. 58(3–4), 357–360 (2004)

    Article  Google Scholar 

  25. Körner, C., Hirschmann, M., Bräutigam, V., Singer, R.F.: Endogenous particle stabilization during magnesium integral foam production. Adv. Eng. Mater. 6(6), 385–390 (2004)

    Article  Google Scholar 

  26. Lefebvre, L.P., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008)

    Article  Google Scholar 

  27. Carolin, K., Singer, R.F.: Processing of metal foams-challenges and opportunities. Adv. Eng. Mater. 2(4), 159–165 (2000)

    Article  Google Scholar 

  28. Kumar, K.: Optimizing the Electrical Discharge Drilling Process for High Aspect Micro Hole Drilling in Die Steel, Book Chapter (2017). https://doi.org/10.4018/978-1-5225-2440-3.ch006

  29. Kumar, K., Rawal, S.K., Singh, V.P., Bala, A.: Experimental study on diametric expansion and taper rate in EDM drilling for high aspect ratio micro holes in high strength materials. Mater. Today: Proc. 5(2), 7363–7372 (2018)

    Google Scholar 

  30. Gill, R.S., Kumar, K., Batra, U.: Apatite formation and weight loss study in EDMed perforated AZ31 Mg-alloy. J. Mag. Alloy 5(3), 362–367 (2017)

    Article  Google Scholar 

  31. Yan, B.H., Wang, A.C., Huang, C.Y., Huang, F.Y.: Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining. Int. J. Mach. Tool Manuf. 42, 1105–1112 (2002)

    Article  Google Scholar 

  32. Liu, H.S., Yan, B.H., Huang, F.Y., Qui, K.H.: A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications. J. Mater. Process. Technol. 169, 418–426 (2005)

    Article  Google Scholar 

  33. Kuppan, P., Rajadurai, A., Narayanan, S.: Influence of EDM process parameters in deep hole drilling of Inconel 718. Int. J. Adv. Manuf. Technol. 38, 74–84 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

The funding for this work is sponsored by Science & Engineering Research Board, Department of Science and Technology, New Delhi, India under the research project entitled “Design and Development of biodegradable Mg alloy Implants for orthopedic application” (File Number: EMR/2016/001581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahuja, N., Kumar, K., Batra, U., Garg, S.K. (2019). Fabrication of Biodegradable Mg Alloy Bone Scaffold Through Electrical Discharge µ-Drilling Route. In: Gapiński, B., Szostak, M., Ivanov, V. (eds) Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16943-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16943-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16942-8

  • Online ISBN: 978-3-030-16943-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics