Skip to main content

Diagnostic Imaging Advances

  • Chapter
  • First Online:
  • 1332 Accesses

Abstract

Safe and efficient high-dose radiation delivery to target tissue, while minimizing the exposure and toxicity of adjacent non-target organs, is considered the paramount goal of stereotactic radiosurgery. With the expanding applications of stereotactic radiosurgery, the requirement for imaging tools to precisely and accurately guide treatment planning and posttreatment disease monitoring has also grown. As radiosurgery pioneers many frontiers in noninvasive personalized medicine, the need for reliable imaging biomarkers is particularly evident in oncologic practice where differentiation of treatment-related changes from tumor recurrence is of critical importance. This chapter reviews entity-specific and technical considerations of advanced imaging in the planning and follow-up of a variety of benign and malignant intracranial lesions, as well as lung and prostate carcinomas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

CT:

Computed tomography

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

FLAIR:

Fluid attenuated inversion recovery

GRE:

Gradient echo

mpMRI:

Multiparametric magnetic resonance imaging

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

NSCLC:

Non-small cell lung cancer

PET:

Positron emission tomography

SABR:

Stereotactic ablative radiotherapy

SBRT:

Stereotactic body radiation therapy

SI:

Signal intensity

SWI:

Susceptibility-weighted imaging

References

  1. Bonneville F, Savatovsky J, Chiras J. Imaging of cerebellopontine angle lesions: an update. Part 1: enhancing extra-axial lesions. Eur Radiol. 2007;17(10):2472–82.

    Article  PubMed  Google Scholar 

  2. Kim DY, Lee JH, Goh MJ, Sung YS, Choi YJ, Yoon RG, et al. Clinical significance of an increased cochlear 3D fluid-attenuated inversion recovery signal intensity on an MR imaging examination in patients with acoustic neuroma. AJNR Am J Neuroradiol. 2014;35(9):1825–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salzman KL, Childs AM, Davidson HC, Kennedy RJ, Shelton C, Harnsberger HR. Intralabyrinthine schwannomas: imaging diagnosis and classification. AJNR Am J Neuroradiol. 2012;33(1):104–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kondziolka D, Mousavi SH, Kano H, Flickinger JC, Lunsford LD. The newly diagnosed vestibular schwannoma: radiosurgery, resection, or observation? Neurosurg Focus. 2012;33(3):E8.

    Article  PubMed  Google Scholar 

  5. Bowden G, Cavaleri J, Iii EM, Niranjan A, Flickinger J, Lunsford LD. Cystic vestibular schwannomas respond best to radiosurgery. Neurosurgery. 2017;81(3):490–7.

    Article  PubMed  Google Scholar 

  6. Link MJ, Driscoll CL, Foote RL, Pollock BE. Radiation therapy and radiosurgery for vestibular schwannomas: indications, techniques, and results. Otolaryngol Clin N Am. 2012;45(2):353–66, viii–ix.

    Article  Google Scholar 

  7. Pendl G, Ganz JC, Kitz K, Eustacchio S. Acoustic neurinomas with macrocysts treated with Gamma Knife radiosurgery. Stereotact Funct Neurosurg. 1996;66(Suppl 1):103–11.

    Article  PubMed  Google Scholar 

  8. Delsanti C, Regis J. Cystic vestibular schwannomas. Neurochirurgie. 2004;50(2–3 Pt 2):401–6.

    CAS  PubMed  Google Scholar 

  9. Frisch CD, Jacob JT, Carlson ML, Foote RL, Driscoll CL, Neff BA, et al. Stereotactic radiosurgery for cystic vestibular schwannomas. Neurosurgery. 2017;80(1):112–8.

    PubMed  Google Scholar 

  10. Wu CC, Guo WY, Chung WY, Wu HM, Lin CJ, Lee CC, et al. Magnetic resonance imaging characteristics and the prediction of outcome of vestibular schwannomas following Gamma Knife radiosurgery. J Neurosurg. 2017;127:1–8.

    Google Scholar 

  11. Nagano O, Serizawa T, Higuchi Y, Matsuda S, Sato M, Yamakami I, et al. Tumor shrinkage of vestibular schwannomas after Gamma Knife surgery: results after more than 5 years of follow-up. J Neurosurg. 2010;113(Suppl):122–7.

    Article  PubMed  Google Scholar 

  12. Regis J, Delsanti C, Roche PH. Editorial: vestibular schwannoma radiosurgery: progression or pseudoprogression? J Neurosurg. 2017;127(2):374–9.

    Article  PubMed  Google Scholar 

  13. Hayhurst C, Zadeh G. Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro-Oncology. 2012;14(1):87–92.

    Article  PubMed  Google Scholar 

  14. Nakamura H, Jokura H, Takahashi K, Boku N, Akabane A, Yoshimoto T. Serial follow-up MR imaging after gamma knife radiosurgery for vestibular schwannoma. AJNR Am J Neuroradiol. 2000;21(8):1540–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fukuoka S, Takanashi M, Hojyo A, Konishi M, Tanaka C, Nakamura H. Gamma knife radiosurgery for vestibular schwannomas. Prog Neurol Surg. 2009;22:45–62.

    Article  PubMed  Google Scholar 

  16. Bloch J, Vernet O, Aube M, Villemure JG. Non-obstructive hydrocephalus associated with intracranial schwannomas: hyperproteinorrhachia as an etiopathological factor? Acta Neurochir. 2003;145(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  17. Jeon CJ, Kong DS, Nam DH, Lee JI, Park K, Kim JH. Communicating hydrocephalus associated with surgery or radiosurgery for vestibular schwannoma. J Clin Neurosci. 2010;17(7):862–4.

    Article  PubMed  Google Scholar 

  18. Camargo A, Schneider T, Liu L, Pakpoor J, Kleinberg L, Yousem DM. Pretreatment ADC values predict response to radiosurgery in vestibular schwannomas. AJNR Am J Neuroradiol. 2017;38(6):1200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin YC, Wang CC, Wai YY, Wan YL, Ng SH, Chen YL, et al. Significant temporal evolution of diffusion anisotropy for evaluating early response to radiosurgery in patients with vestibular schwannoma: findings from functional diffusion maps. AJNR Am J Neuroradiol. 2010;31(2):269–74.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nanda A, Bir SC, Konar S, Maiti T, Kalakoti P, Jacobsohn JA, et al. Outcome of resection of WHO Grade II meningioma and correlation of pathological and radiological predictive factors for recurrence. J Clin Neurosci. 2016;31:112–21.

    Article  PubMed  Google Scholar 

  21. Lee EJ, Kim JH, Park ES, Kim YH, Lee JK, Hong SH, et al. A novel weighted scoring system for estimating the risk of rapid growth in untreated intracranial meningiomas. J Neurosurg. 2017;127:1–10.

    Google Scholar 

  22. Tang Y, Dundamadappa SK, Thangasamy S, Flood T, Moser R, Smith T, et al. Correlation of apparent diffusion coefficient with Ki-67 proliferation index in grading meningioma. AJR Am J Roentgenol. 2014;202(6):1303–8.

    Article  PubMed  Google Scholar 

  23. Surov A, Ginat DT, Sanverdi E, Lim CC, Hakyemez B, Yogi A, et al. Use of diffusion weighted imaging in differentiating between maligant and benign meningiomas. A multicenter analysis. World Neurosurg. 2016;88:598–602.

    Article  PubMed  Google Scholar 

  24. Chen WC, Magill ST, Englot DJ, Baal JD, Wagle S, Rick JW, et al. Factors associated with pre- and postoperative seizures in 1033 patients undergoing supratentorial meningioma resection. Neurosurgery. 2017;81(2):297–306.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Berhouma M, Jacquesson T, Jouanneau E, Cotton F. Pathogenesis of peri-tumoral edema in intracranial meningiomas. Neurosurg Rev. 2017. https://doi.org/10.1007/s10143-017-0897-x. [Epub ahead of print].

  26. Alomari A, Rauch PJ, Orsaria M, Minja FJ, Chiang VL, Vortmeyer AO. Radiologic and histologic consequences of radiosurgery for brain tumors. J Neuro-Oncol. 2014;117(1):33–42.

    Article  CAS  Google Scholar 

  27. Raper D, Yen CP, Mukherjee S, Sheehan J. Decreased calcification of a petroclival meningioma after gamma knife radiosurgery. BMJ Case Rep. 2014;pii:bcr2014204272. https://doi.org/10.1136/bcr-2014-204272.

    Article  Google Scholar 

  28. Harrison G, Kano H, Lunsford LD, Flickinger JC, Kondziolka D. Quantitative tumor volumetric responses after Gamma Knife radiosurgery for meningiomas. J Neurosurg. 2016;124(1):146–54.

    Article  PubMed  Google Scholar 

  29. Feigl GC, Samii M, Horstmann GA. Volumetric follow-up of meningiomas: a quantitative method to evaluate treatment outcome of gamma knife radiosurgery. Neurosurgery. 2007;61(2):281–6; discussion 6–7.

    Article  PubMed  Google Scholar 

  30. Kollova A, Liscak R, Novotny J Jr, Vladyka V, Simonova G, Janouskova L. Gamma Knife surgery for benign meningioma. J Neurosurg. 2007;107(2):325–36.

    Article  PubMed  Google Scholar 

  31. Sheehan JP, Starke RM, Kano H, Barnett GH, Mathieu D, Chiang V, et al. Gamma Knife radiosurgery for posterior fossa meningiomas: a multicenter study. J Neurosurg. 2015;122(6):1479–89.

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Kim S, Zhang Y, Wang L, Lee EB, Syre P, et al. Determination of grade and subtype of meningiomas by using histogram analysis of diffusion-tensor imaging metrics. Radiology. 2012;262(2):584–92.

    Article  PubMed  Google Scholar 

  33. Speckter H, Bido J, Hernandez G, Mejia DR, Suazo L, Valenzuela S, et al. Prognostic value of diffusion tensor imaging parameters for Gamma Knife radiosurgery in meningiomas. J Neurosurg. 2016;125(Suppl 1):83–8.

    Article  PubMed  Google Scholar 

  34. Sheehan JP, Ray DK, Monteith S, Yen CP, Lesnick J, Kersh R, et al. Gamma Knife radiosurgery for trigeminal neuralgia: the impact of magnetic resonance imaging-detected vascular impingement of the affected nerve. J Neurosurg. 2010;113(1):53–8.

    Article  PubMed  Google Scholar 

  35. Hughes MA, Frederickson AM, Branstetter BF, Zhu X, Sekula RF Jr. MRI of the trigeminal nerve in patients with trigeminal neuralgia secondary to vascular compression. AJR Am J Roentgenol. 2016;206(3):595–600.

    Article  PubMed  Google Scholar 

  36. Alberico RA, Fenstermaker RA, Lobel J. Focal enhancement of cranial nerve V after radiosurgery with the Leksell Gamma Knife: experience in 15 patients with medically refractory trigeminal neuralgia. AJNR Am J Neuroradiol. 2001;22(10):1944–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Massager N, Abeloos L, Devriendt D, Op de Beeck M, Levivier M. Clinical evaluation of targeting accuracy of Gamma Knife radiosurgery in trigeminal neuralgia. Int J Radiat Oncol Biol Phys. 2007;69(5):1514–20.

    Article  PubMed  Google Scholar 

  38. Lutz J, Thon N, Stahl R, Lummel N, Tonn JC, Linn J, et al. Microstructural alterations in trigeminal neuralgia determined by diffusion tensor imaging are independent of symptom duration, severity, and type of neurovascular conflict. J Neurosurg. 2016;124(3):823–30.

    Article  PubMed  Google Scholar 

  39. Hodaie M, Chen DQ, Quan J, Laperriere N. Tractography delineates microstructural changes in the trigeminal nerve after focal radiosurgery for trigeminal neuralgia. PLoS One. 2012;7(3):e32745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hung PS, Chen DQ, Davis KD, Zhong J, Hodaie M. Predicting pain relief: use of pre-surgical trigeminal nerve diffusion metrics in trigeminal neuralgia. Neuroimage Clin. 2017;15:710–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen DQ, DeSouza DD, Hayes DJ, Davis KD, O’Connor P, Hodaie M. Diffusivity signatures characterize trigeminal neuralgia associated with multiple sclerosis. Mult Scler. 2016;22(1):51–63.

    Article  CAS  PubMed  Google Scholar 

  42. Tranvinh E, Heit JJ, Hacein-Bey L, Provenzale J, Wintermark M. Contemporary imaging of cerebral arteriovenous malformations. AJR Am J Roentgenol. 2017;208(6):1320–30.

    Article  PubMed  Google Scholar 

  43. Jagadeesan BD, Delgado Almandoz JE, Benzinger TL, Moran CJ. Postcontrast susceptibility-weighted imaging: a novel technique for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke. 2011;42(11):3127–31.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jagadeesan BD, Delgado Almandoz JE, Moran CJ, Benzinger TL. Accuracy of susceptibility-weighted imaging for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke. 2011;42(1):87–92.

    Article  PubMed  Google Scholar 

  45. Chang W, Wu Y, Johnson K, Loecher M, Wieben O, Edjlali M, et al. Fast contrast-enhanced 4D MRA and 4D flow MRI using constrained reconstruction (HYPRFlow): potential applications for brain arteriovenous malformations. AJNR Am J Neuroradiol. 2015;36(6):1049–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee CC, Reardon MA, Ball BZ, Chen CJ, Yen CP, Xu Z, et al. The predictive value of magnetic resonance imaging in evaluating intracranial arteriovenous malformation obliteration after stereotactic radiosurgery. J Neurosurg. 2015;123(1):136–44.

    Article  PubMed  Google Scholar 

  47. Mukherji SK, Quisling RG, Kubilis PS, Finn JP, Friedman WA. Intracranial arteriovenous malformations: quantitative analysis of magnitude contrast MR angiography versus gradient-echo MR imaging versus conventional angiography. Radiology. 1995;196(1):187–93.

    Article  CAS  PubMed  Google Scholar 

  48. Buis DR, Bot JC, Barkhof F, Knol DL, Lagerwaard FJ, Slotman BJ, et al. The predictive value of 3D time-of-flight MR angiography in assessment of brain arteriovenous malformation obliteration after radiosurgery. AJNR Am J Neuroradiol. 2012;33(2):232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giesel FL, Essig M, Zabel-Du-Bois A, Bock M, von Tengg-Kobligk H, Afshar-Omarei A, et al. High-contrast computed tomographic angiography better detects residual intracranial arteriovenous malformations in long-term follow-up after radiotherapy than 1.5-Tesla time-of-flight magnetic resonance angiography. Acta Radiol. 2010;51(1):64–70.

    Article  PubMed  Google Scholar 

  50. Gross BA, Frerichs KU, Du R. Sensitivity of CT angiography, T2-weighted MRI, and magnetic resonance angiography in detecting cerebral arteriovenous malformations and associated aneurysms. J Clin Neurosci. 2012;19(8):1093–5.

    Article  PubMed  Google Scholar 

  51. Hadizadeh DR, Kukuk GM, Steck DT, Gieseke J, Urbach H, Tschampa HJ, et al. Noninvasive evaluation of cerebral arteriovenous malformations by 4D-MRA for preoperative planning and postoperative follow-up in 56 patients: comparison with DSA and intraoperative findings. AJNR Am J Neuroradiol. 2012;33(6):1095–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haridass A, Maclean J, Chakraborty S, Sinclair J, Szanto J, Iancu D, et al. Dynamic CT angiography for cyberknife radiosurgery planning of intracranial arteriovenous malformations: a technical/feasibility report. Radiol Oncol. 2015;49(2):192–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Turner RC, Lucke-Wold BP, Josiah D, Gonzalez J, Schmidt M, Tarabishy AR, et al. Stereotactic radiosurgery planning based on time-resolved CTA for arteriovenous malformation: a case report and review of the literature. Acta Neurochir. 2016;158(8):1555–62.

    Article  PubMed  Google Scholar 

  54. Starke RM, Kano H, Ding D, Lee JY, Mathieu D, Whitesell J, et al. Stereotactic radiosurgery for cerebral arteriovenous malformations: evaluation of long-term outcomes in a multicenter cohort. J Neurosurg. 2017;126(1):36–44.

    Article  PubMed  Google Scholar 

  55. Yen CP, Varady P, Sheehan J, Steiner M, Steiner L. Subtotal obliteration of cerebral arteriovenous malformations after gamma knife surgery. J Neurosurg. 2007;106(3):361–9.

    Article  PubMed  Google Scholar 

  56. Abu-Salma Z, Nataf F, Ghossoub M, Schlienger M, Meder JF, Houdart E, et al. The protective status of subtotal obliteration of arteriovenous malformations after radiosurgery: significance and risk of hemorrhage. Neurosurgery. 2009;65(4):709–17; discussion 17–8.

    Article  PubMed  Google Scholar 

  57. Yen CP, Matsumoto JA, Wintermark M, Schwyzer L, Evans AJ, Jensen ME, et al. Radiation-induced imaging changes following Gamma Knife surgery for cerebral arteriovenous malformations. J Neurosurg. 2013;118(1):63–73.

    Article  PubMed  Google Scholar 

  58. Ilyas A, Chen CJ, Ding D, Buell TJ, Raper DMS, Lee CC, et al. Radiation-induced changes after stereotactic radiosurgery for brain arteriovenous malformations: a systematic review and meta-analysis. Neurosurgery. 2018;83(3):365–76.

    Article  PubMed  Google Scholar 

  59. Ilyas A, Chen CJ, Ding D, Mastorakos P, Taylor DG, Pomeraniec IJ, et al. Cyst formation after stereotactic radiosurgery for brain arteriovenous malformations: a systematic review. J Neurosurg. 2017;128:1–10.

    Google Scholar 

  60. Pollock BE, Link MJ, Branda ME, Storlie CB. Incidence and management of late adverse radiation effects after arteriovenous malformation radiosurgery. Neurosurgery. 2017;81(6):928–34.

    Article  PubMed  Google Scholar 

  61. Hasan DM, Amans M, Tihan T, Hess C, Guo Y, Cha S, et al. Ferumoxytol-enhanced MRI to image inflammation within human brain arteriovenous malformations: a pilot investigation. Transl Stroke Res. 2012;3(Suppl 1):166–73.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gkagkanasiou M, Ploussi A, Gazouli M, Efstathopoulos EP. USPIO-enhanced MRI neuroimaging: a review. J Neuroimaging. 2016;26(2):161–8.

    Article  PubMed  Google Scholar 

  63. Park J, Kim J, Yoo E, Lee H, Chang JH, Kim EY. Detection of small metastatic brain tumors: comparison of 3D contrast-enhanced whole-brain black-blood imaging and MP-RAGE imaging. Investig Radiol. 2012;47(2):136–41.

    Article  Google Scholar 

  64. Lee S, Park DW, Lee JY, Lee YJ, Kim T. Improved motion-sensitized driven-equilibrium preparation for 3D turbo spin echo T1 weighted imaging after gadolinium administration for the detection of brain metastases on 3T MRI. Br J Radiol. 2016;89(1063):20150176.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kushnirsky M, Nguyen V, Katz JS, Steinklein J, Rosen L, Warshall C, et al. Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes. J Neurosurg. 2016;124(2):489–95.

    Article  CAS  PubMed  Google Scholar 

  66. Seibert TM, White NS, Kim GY, Moiseenko V, McDonald CR, Farid N, et al. Distortion inherent to magnetic resonance imaging can lead to geometric miss in radiosurgery planning. Pract Radiat Oncol. 2016;6(6):e319–e28.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Karaiskos P, Moutsatsos A, Pappas E, Georgiou E, Roussakis A, Torrens M, et al. A simple and efficient methodology to improve geometric accuracy in gamma knife radiation surgery: implementation in multiple brain metastases. Int J Radiat Oncol Biol Phys. 2014;90(5):1234–41.

    Article  PubMed  Google Scholar 

  68. Patel TR, McHugh BJ, Bi WL, Minja FJ, Knisely JP, Chiang VL. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. AJNR Am J Neuroradiol. 2011;32(10):1885–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kano H, Kondziolka D, Lobato-Polo J, Zorro O, Flickinger JC, Lunsford LD. T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery. Neurosurgery. 2010;66(3):486–91; discussion 91–2.

    Article  PubMed  Google Scholar 

  70. Dequesada IM, Quisling RG, Yachnis A, Friedman WA. Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery. 2008;63(5):898–903; discussion 4.

    Article  PubMed  Google Scholar 

  71. Leeman JE, Clump DA, Flickinger JC, Mintz AH, Burton SA, Heron DE. Extent of perilesional edema differentiates radionecrosis from tumor recurrence following stereotactic radiosurgery for brain metastases. Neuro-Oncology. 2013;15(12):1732–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Stockham AL, Tievsky AL, Koyfman SA, Reddy CA, Suh JH, Vogelbaum MA, et al. Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J Neuro-Oncol. 2012;109(1):149–58.

    Article  Google Scholar 

  73. Cha J, Kim ST, Kim HJ, Kim BJ, Jeon P, Kim KH, et al. Analysis of the layering pattern of the apparent diffusion coefficient (ADC) for differentiation of radiation necrosis from tumour progression. Eur Radiol. 2013;23(3):879–86.

    Article  PubMed  Google Scholar 

  74. Lee CC, Wintermark M, Xu Z, Yen CP, Schlesinger D, Sheehan JP. Application of diffusion-weighted magnetic resonance imaging to predict the intracranial metastatic tumor response to gamma knife radiosurgery. J Neuro-Oncol. 2014;118(2):351–61.

    Article  Google Scholar 

  75. Goldman M, Boxerman JL, Rogg JM, Noren G. Utility of apparent diffusion coefficient in predicting the outcome of Gamma Knife-treated brain metastases prior to changes in tumor volume: a preliminary study. J Neurosurg. 2006;105(Suppl):175–82.

    Article  PubMed  Google Scholar 

  76. Huang CF, Chou HH, Tu HT, Yang MS, Lee JK, Lin LY. Diffusion magnetic resonance imaging as an evaluation of the response of brain metastases treated by stereotactic radiosurgery. Surg Neurol. 2008;69(1):62–8; discussion 8.

    Article  PubMed  Google Scholar 

  77. Essig M, Shiroishi MS, Nguyen TB, Saake M, Provenzale JM, Enterline D, et al. Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol. 2013;200(1):24–34.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hoefnagels FW, Lagerwaard FJ, Sanchez E, Haasbeek CJ, Knol DL, Slotman BJ, et al. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol. 2009;256(6):878–87.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. 2009;30(2):367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mitsuya K, Nakasu Y, Horiguchi S, Harada H, Nishimura T, Bando E, et al. Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neuro-Oncol. 2010;99(1):81–8.

    Article  Google Scholar 

  81. Huang J, Wang AM, Shetty A, Maitz AH, Yan D, Doyle D, et al. Differentiation between intra-axial metastatic tumor progression and radiation injury following fractionated radiation therapy or stereotactic radiosurgery using MR spectroscopy, perfusion MR imaging or volume progression modeling. Magn Reson Imaging. 2011;29(7):993–1001.

    Article  PubMed  Google Scholar 

  82. Hatzoglou V, Ulaner GA, Zhang Z, Beal K, Holodny AI, Young RJ. Comparison of the effectiveness of MRI perfusion and fluorine-18 FDG PET-CT for differentiating radiation injury from viable brain tumor: a preliminary retrospective analysis with pathologic correlation in all patients. Clin Imaging. 2013;37(3):451–7.

    Article  PubMed  Google Scholar 

  83. Welker K, Boxerman J, Kalnin A, Kaufmann T, Shiroishi M, Wintermark M. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol. 2015;36(6):E41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rapalino O, Ratai EM. Multiparametric imaging analysis: magnetic resonance spectroscopy. Magn Reson Imaging Clin N Am. 2016;24(4):671–86.

    Article  CAS  PubMed  Google Scholar 

  85. Chernov M, Hayashi M, Izawa M, Ochiai T, Usukura M, Abe K, et al. Differentiation of the radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases: importance of multi-voxel proton MRS. Minim Invasive Neurosurg. 2005;48(4):228–34.

    Article  CAS  PubMed  Google Scholar 

  86. Chernov MF, Hayashi M, Izawa M, Usukura M, Yoshida S, Ono Y, et al. Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases. Brain Tumor Pathol. 2006;23(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  87. Kimura T, Sako K, Tanaka K, Gotoh T, Yoshida H, Aburano T, et al. Evaluation of the response of metastatic brain tumors to stereotactic radiosurgery by proton magnetic resonance spectroscopy, 201TlCl single-photon emission computerized tomography, and gadolinium-enhanced magnetic resonance imaging. J Neurosurg. 2004;100(5):835–41.

    Article  PubMed  Google Scholar 

  88. Kimura T, Sako K, Tohyama Y, Aizawa S, Yoshida H, Aburano T, et al. Diagnosis and treatment of progressive space-occupying radiation necrosis following stereotactic radiosurgery for brain metastasis: value of proton magnetic resonance spectroscopy. Acta Neurochir. 2003;145(7):557–64; discussion 64.

    Article  CAS  PubMed  Google Scholar 

  89. Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer. 2001;96(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  90. Hatzoglou V, Yang TJ, Omuro A, Gavrilovic I, Ulaner G, Rubel J, et al. A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro-Oncology. 2016;18(6):873–80.

    Article  CAS  PubMed  Google Scholar 

  91. Belohlavek O, Simonova G, Kantorova I, Novotny J Jr, Liscak R. Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med Mol Imaging. 2003;30(1):96–100.

    Article  CAS  PubMed  Google Scholar 

  92. Sneed PK, Mendez J, Vemer-van den Hoek JG, Seymour ZA, Ma L, Molinaro AM, et al. Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg. 2015;123(2):373–86.

    Article  CAS  PubMed  Google Scholar 

  93. Kickingereder P, Dorn F, Blau T, Schmidt M, Kocher M, Galldiks N, et al. Differentiation of local tumor recurrence from radiation-induced changes after stereotactic radiosurgery for treatment of brain metastasis: case report and review of the literature. Radiat Oncol. 2013;8:52.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tomura N, Kokubun M, Saginoya T, Mizuno Y, Kikuchi Y. Differentiation between treatment-induced necrosis and recurrent tumors in patients with metastatic brain tumors: comparison among (11)C-methionine-PET, FDG-PET, MR permeability imaging, and MRI-ADC-preliminary results. AJNR Am J Neuroradiol. 2017;38(8):1520–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Franks KN, Jain P, Snee MP. Stereotactic ablative body radiotherapy for lung cancer. Clin Oncol (R Coll Radiol). 2015;27(5):280–9.

    Article  CAS  Google Scholar 

  96. Palma D, Lagerwaard F, Rodrigues G, Haasbeek C, Senan S. Curative treatment of stage I non-small-cell lung cancer in patients with severe COPD: stereotactic radiotherapy outcomes and systematic review. Int J Radiat Oncol Biol Phys. 2012;82(3):1149–56.

    Article  PubMed  Google Scholar 

  97. Martin A, Gaya A. Stereotactic body radiotherapy: a review. Clin Oncol (R Coll Radiol). 2010;22(3):157–72.

    Article  CAS  Google Scholar 

  98. Boffa DJ, Allen MS, Grab JD, Gaissert HA, Harpole DH, Wright CD. Data from The Society of Thoracic Surgeons General Thoracic Surgery database: the surgical management of primary lung tumors. J Thorac Cardiovasc Surg. 2008;135(2):247–54.

    Article  PubMed  Google Scholar 

  99. Smith CB, Swanson SJ, Mhango G, Wisnivesky JP. Survival after segmentectomy and wedge resection in stage I non-small-cell lung cancer. J Thorac Oncol. 2013;8(1):73–8.

    Article  PubMed  Google Scholar 

  100. Agolli L, Valeriani M, Nicosia L, Bracci S, De Sanctis V, Minniti G, et al. Stereotactic ablative body radiotherapy (SABR) in pulmonary oligometastatic/oligorecurrent non-small cell lung cancer patients: a new therapeutic approach. Anticancer Res. 2015;35(11):6239–45.

    CAS  PubMed  Google Scholar 

  101. Ceniceros L, Aristu J, Castanon E, Rolfo C, Legaspi J, Olarte A, et al. Stereotactic body radiotherapy (SBRT) for the treatment of inoperable stage I non-small cell lung cancer patients. Clin Transl Oncol. 2016;18(3):259–68.

    Article  CAS  PubMed  Google Scholar 

  102. Aridgides P, Bogart J. Stereotactic body radiation therapy for stage I non-small cell lung cancer. Thorac Surg Clin. 2016;26(3):261–9.

    Article  PubMed  Google Scholar 

  103. De Rose F, Franceschini D, Reggiori G, Stravato A, Navarria P, Ascolese AM, et al. Organs at risk in lung SBRT. Phys Med. 2017;44:131–8.

    Article  PubMed  Google Scholar 

  104. Alongi F, Arcangeli S, De Bari B, Giaj-Levra N, Fiorentino A, Mazzola R, et al. Stage-I small cell lung cancer: a new potential option for stereotactic ablative radiation therapy? A review of literature. Crit Rev Oncol Hematol. 2017;112:67–71.

    Article  PubMed  Google Scholar 

  105. Milano MT, Katz AW, Zhang H, Okunieff P. Oligometastases treated with stereotactic body radiotherapy: long-term follow-up of prospective study. Int J Radiat Oncol Biol Phys. 2012;83(3):878–86.

    Article  PubMed  Google Scholar 

  106. Scorsetti M, Clerici E, Navarria P, D’Agostino G, Piergallini L, De Rose F, et al. The role of stereotactic body radiation therapy (SBRT) in the treatment of oligometastatic disease in the elderly. Br J Radiol. 2015;88(1053):20150111.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wild AT, Yamada Y. Treatment options in oligometastatic disease: stereotactic body radiation therapy – focus on colorectal cancer. Visc Med. 2017;33(1):54–61.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Giglioli FR, Clemente S, Esposito M, Fiandra C, Marino C, Russo S, et al. Frontiers in planning optimization for lung SBRT. Phys Med. 2017;44:163–70.

    Article  PubMed  Google Scholar 

  109. Smith DW, Dean C, Lilley J. A practical method of identifying data loss in 4DCT. Radiother Oncol. 2012;102(3):393–8.

    Article  PubMed  Google Scholar 

  110. Pollom EL, Chin AL, Diehn M, Loo BW, Chang DT. Normal tissue constraints for abdominal and thoracic stereotactic body radiotherapy. Semin Radiat Oncol. 2017;27(3):197–208.

    Article  PubMed  Google Scholar 

  111. Ruggieri R, Stavrev P, Naccarato S, Stavreva N, Alongi F, Nahum AE. Optimal dose and fraction number in SBRT of lung tumours: a radiobiological analysis. Phys Med. 2017;44:188–95.

    Article  PubMed  Google Scholar 

  112. Larici AR, del Ciello A, Maggi F, Santoro SI, Meduri B, Valentini V, et al. Lung abnormalities at multimodality imaging after radiation therapy for non-small cell lung cancer. Radiographics. 2011;31(3):771–89.

    Article  PubMed  Google Scholar 

  113. Choi YW, Munden RF, Erasmus JJ, Park KJ, Chung WK, Jeon SC, et al. Effects of radiation therapy on the lung: radiologic appearances and differential diagnosis. Radiographics. 2004;24(4):985–97; discussion 98.

    Article  PubMed  Google Scholar 

  114. Park KJ, Chung JY, Chun MS, Suh JH. Radiation-induced lung disease and the impact of radiation methods on imaging features. Radiographics. 2000;20(1):83–98.

    Article  CAS  PubMed  Google Scholar 

  115. Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 2006;24(30):4833–9.

    Article  PubMed  Google Scholar 

  116. Kang KH, Okoye CC, Patel RB, Siva S, Biswas T, Ellis RJ, et al. Complications from stereotactic body radiotherapy for lung cancer. Cancers (Basel). 2015;7(2):981–1004.

    Article  CAS  Google Scholar 

  117. Chang JY, Roth JA. Stereotactic body radiation therapy for stage I non-small cell lung cancer. Thorac Surg Clin. 2007;17(2):251–9.

    Article  PubMed  Google Scholar 

  118. Hong JC, Salama JK. The expanding role of stereotactic body radiation therapy in oligometastatic solid tumors: what do we know and where are we going? Cancer Treat Rev. 2017;52:22–32.

    Article  PubMed  Google Scholar 

  119. Pastorino U, Buyse M, Friedel G, Ginsberg RJ, Girard P, Goldstraw P, et al. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. J Thorac Cardiovasc Surg. 1997;113(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  120. Navarria P, De Rose F, Ascolese AM. SBRT for lung oligometastases: who is the perfect candidate? Rep Pract Oncol Radiother. 2015;20(6):446–53.

    Article  PubMed  Google Scholar 

  121. Vargas HA, Wassberg C, Akin O, Hricak H. MR imaging of treated prostate cancer. Radiology. 2012;262(1):26–42.

    Article  PubMed  Google Scholar 

  122. Hoeks CM, Barentsz JO, Hambrock T, Yakar D, Somford DM, Heijmink SW, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology. 2011;261(1):46–66.

    Article  PubMed  Google Scholar 

  123. Wallitt KL, Khan SR, Dubash S, Tam HH, Khan S, Barwick TD. Clinical PET imaging in prostate cancer. Radiographics. 2017;37(5):1512–36.

    Article  PubMed  Google Scholar 

  124. Westphalen AC, Coakley FV, Roach M 3rd, McCulloch CE, Kurhanewicz J. Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5-T endorectal MR imaging and MR spectroscopic imaging for detection. Radiology. 2010;256(2):485–92.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Rouviere O, Valette O, Grivolat S, Colin-Pangaud C, Bouvier R, Chapelon JY, et al. Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor – correlation with biopsy findings. Urology. 2004;63(5):922–7.

    Article  PubMed  Google Scholar 

  126. Haider MA, Chung P, Sweet J, Toi A, Jhaveri K, Menard C, et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(2):425–30.

    Article  PubMed  Google Scholar 

  127. Kim CK, Park BK, Lee HM. Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3T diffusion-weighted MRI. J Magn Reson Imaging. 2009;29(2):391–7.

    Article  PubMed  Google Scholar 

  128. Akin O, Gultekin DH, Vargas HA, Zheng J, Moskowitz C, Pei X, et al. Incremental value of diffusion weighted and dynamic contrast enhanced MRI in the detection of locally recurrent prostate cancer after radiation treatment: preliminary results. Eur Radiol. 2011;21(9):1970–8.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Fanti S, Minozzi S, Castellucci P, Balduzzi S, Herrmann K, Krause BJ, et al. PET/CT with (11)C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging. 2016;43(1):55–69.

    Article  CAS  PubMed  Google Scholar 

  130. Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med. 2013;38(5):305–14.

    Article  PubMed  Google Scholar 

  131. Vees H, Buchegger F, Albrecht S, Khan H, Husarik D, Zaidi H, et al. 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/mL) after radical prostatectomy. BJU Int. 2007;99(6):1415–20.

    Article  CAS  PubMed  Google Scholar 

  132. Treglia G, Ceriani L, Sadeghi R, Giovacchini G, Giovanella L. Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: a meta-analysis. Clin Chem Lab Med. 2014;52(5):725–33.

    Article  CAS  PubMed  Google Scholar 

  133. Perera M, Papa N, Christidis D, Wetherell D, Hofman MS, Murphy DG, et al. Sensitivity, specificity, and predictors of positive (68)Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016;70(6):926–37.

    Article  PubMed  Google Scholar 

  134. Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, et al. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 2016;43(9):1601–10.

    Article  CAS  PubMed  Google Scholar 

  135. Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, et al. Multisite experience of the safety, detection rate and diagnostic performance of fluciclovine ((18)F) positron emission tomography/computerized tomography imaging in the staging of biochemically recurrent prostate cancer. J Urol. 2017;197(3 Pt 1):676–83.

    Article  PubMed  Google Scholar 

  136. Kawahara Y, Nakada M, Hayashi Y, Kai Y, Uchiyama N, Nakamura H, et al. Prediction of high-grade meningioma by preoperative MRI assessment. J Neuro-Oncol. 2012;108(1):147–52.

    Article  Google Scholar 

  137. Lin BJ, Chou KN, Kao HW, Lin C, Tsai WC, Feng SW, et al. Correlation between magnetic resonance imaging grading and pathological grading in meningioma. J Neurosurg. 2014;121(5):1201–8.

    Article  PubMed  Google Scholar 

  138. Yin B, Liu L, Zhang BY, Li YX, Li Y, Geng DY. Correlating apparent diffusion coefficients with histopathologic findings on meningiomas. Eur J Radiol. 2012;81(12):4050–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Donahue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Donahue, J.H., Bueno, J., Itri, J.N. (2019). Diagnostic Imaging Advances. In: Trifiletti, D., Chao, S., Sahgal, A., Sheehan, J. (eds) Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-16924-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16924-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16923-7

  • Online ISBN: 978-3-030-16924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics