Skip to main content

Physics of Stereotactic Body Radiotherapy

  • Chapter
  • First Online:
  • 1393 Accesses

Abstract

Stereotactic body radiotherapy (SBRT) has become a widely accepted technique that is available on all modern linear accelerators (linacs) and specialized systems such as CyberKnife and Tomotherapy. The present chapter discusses some of the physics issues that require attention for SBRT, including how the sources of uncertainty factor into the selection of PTV margin; treatment planning considerations; and small-field dosimetry. The chapter includes selected literature that highlights key concepts, including recent international guidelines for safe practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. American College of Radiology. ACR-ASTRO practice parameter for the performance of stereotactic body radiation therapy, amended. 2014.

    Google Scholar 

  2. Timmerman RD, Kavanagh BD, Cho LC, Papiez L, Xing L. Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol. 2007;25(8):947–52.

    Article  Google Scholar 

  3. Halvorsen PH, Cirino E, Das IJ, Garrett JA, Yang J, Yin FF, et al. AAPM-RSS medical physics practice guideline 9.a. for SRS-SBRT. J Appl Clin Med Phys. 2017;18(5):10–21.

    Article  Google Scholar 

  4. Das IJ, Ding GX, Ahnesjö A. Small fields: nonequilibrium radiation dosimetry. Med Phys. 2008;35(1):206–15.

    Article  Google Scholar 

  5. Wulf J, Hädinger U, Oppitz U, Olshausen B, Flentje M. Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiother Oncol. 2000;57(2):225–36.

    Article  CAS  Google Scholar 

  6. Lax I, Blomgren H, Näslund I, Svanström R. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 1994;33(6):677–83.

    Article  CAS  Google Scholar 

  7. Ford EC, Mageras GS, Yorke E, Ling CC. Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys. 2003;30(1):88–97.

    Article  CAS  Google Scholar 

  8. Guckenberger M, Wilbert J, Krieger T, Richter A, Baier K, Meyer J, et al. Four-dimensional treatment planning for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69(1):276–85.

    Article  Google Scholar 

  9. Solberg TD, Balter JM, Benedict SH, Fraass BA, Kavanagh B, Miyamoto C, et al. Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: executive summary. Pract Radiat Oncol. 2012;2(1):2–9.

    Article  Google Scholar 

  10. Balter JM, Ten Haken RK, Lawrence TS, Lam KL, Robertson JM. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys. 1996;36(1):167–74.

    Article  CAS  Google Scholar 

  11. Sonke JJ, Rossi M, Wolthaus J, van Herk M, Damen E, Belderbos J. Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int J Radiat Oncol Biol Phys. 2009;74(2):567–74.

    Article  Google Scholar 

  12. Velec M, Moseley JL, Brock KK. Simplified strategies to determine the mean respiratory position for liver radiation therapy planning. Pract Radiat Oncol. 2014;4(3):160–6.

    Article  Google Scholar 

  13. Peulen H, Belderbos J, Guckenberger M, Hope A, Grills I, van Herk M, et al. Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with stereotactic body radiotherapy. Radiother Oncol. 2015;114(3):361–6.

    Article  Google Scholar 

  14. Redmond KJ, Robertson S, Lo SS, Soltys SG, Ryu S, McNutt T, et al. Consensus contouring guidelines for postoperative stereotactic body radiation therapy for metastatic solid tumor malignancies to the spine. Int J Radiat Oncol Biol Phys. 2017;97(1):64–74.

    Article  Google Scholar 

  15. Cox BW, Spratt DE, Lovelock M, Bilsky MH, Lis E, Ryu S, et al. International Spine Radiosurgery Consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;83(5):e597–605.

    Article  Google Scholar 

  16. Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36(9):4197–212.

    Article  Google Scholar 

  17. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078–101.

    Article  Google Scholar 

  18. Du W, Gao S, Wang X, Kudchadker RJ. Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy. Med Phys. 2012;39(4):2156–62.

    Article  Google Scholar 

  19. Low DA, Li Z, Drzymala RE. Minimization of target positioning error in accelerator-based radiosurgery. Med Phys. 1995;22(4):443–8.

    Article  CAS  Google Scholar 

  20. Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys. 1988;14(2):373–81.

    Article  CAS  Google Scholar 

  21. Rowshanfarzad P, Sabet M, O’Connor DJ, Greer PB. Isocenter verification for linac-based stereotactic radiation therapy: review of principles and techniques. J Appl Clin Med Phys. 2011;12(4):3645.

    Article  Google Scholar 

  22. Hartmann GH, Bauer-Kirpes B, Serago CF, Lorenz WJ. Precision and accuracy of stereotactic convergent beam irradiations from a linear accelerator. Int J Radiat Oncol Biol Phys. 1994;28(2):481–92.

    Article  CAS  Google Scholar 

  23. Moiseenko V, Lapointe V, James K, Yin L, Liu M, Pawlicki T. Biological consequences of MLC calibration errors in IMRT delivery and QA. Med Phys. 2012;39(4):1917–24.

    Article  Google Scholar 

  24. Nithiyanantham K, Mani GK, Subramani V, Mueller L, Palaniappan KK, Kataria T. Analysis of direct clinical consequences of MLC positional errors in volumetric-modulated arc therapy using 3D dosimetry system. J Appl Clin Med Phys. 2015;16(5):296–305.

    Article  Google Scholar 

  25. Bayouth JE, Morrill SM. MLC dosimetric characteristics for small field and IMRT applications. Med Phys. 2003;30(9):2545–52.

    Article  CAS  Google Scholar 

  26. Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys. 2003;30(8):2089–115.

    Article  Google Scholar 

  27. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53(5):1337–49.

    Article  Google Scholar 

  28. Bissonnette JP, Moseley DJ, Jaffray DA. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy. Med Phys. 2008;35(5):1807–15.

    Article  Google Scholar 

  29. Bissonnette JP, Balter PA, Dong L, Langen KM, Lovelock DM, Miften M, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys. 2012;39(4):1946–63.

    Article  Google Scholar 

  30. Paulson ES, Erickson B, Schultz C, Allen Li X. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med Phys. 2015;42(1):28–39.

    Article  Google Scholar 

  31. Ma L, Wang L, Tseng CL, Sahgal A. Emerging technologies in stereotactic body radiotherapy. Chin Clin Oncol. 2017;6(Suppl 2):S12.

    Article  Google Scholar 

  32. Seibert TM, White NS, Kim GY, Moiseenko V, McDonald CR, Farid N, et al. Distortion inherent to magnetic resonance imaging can lead to geometric miss in radiosurgery planning. Pract Radiat Oncol. 2016;6(6):e319–e28.

    Article  Google Scholar 

  33. Dong P, Lee P, Ruan D, Long T, Romeijn E, Yang Y, et al. 4pi non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys. 2013;85(5):1360–6.

    Article  Google Scholar 

  34. Navarria P, Ascolese AM, Mancosu P, Alongi F, Clerici E, Tozzi A, et al. Volumetric modulated arc therapy with flattening filter free (FFF) beams for stereotactic body radiation therapy (SBRT) in patients with medically inoperable early stage non small cell lung cancer (NSCLC). Radiother Oncol. 2013;107(3):414–8.

    Article  Google Scholar 

  35. Thomas EM, Popple RA, Prendergast BM, Clark GM, Dobelbower MC, Fiveash JB. Effects of flattening filter-free and volumetric-modulated arc therapy delivery on treatment efficiency. J Appl Clin Med Phys. 2013;14(6):4328.

    Article  Google Scholar 

  36. Foster RD, Speiser MP, Solberg TD. Commissioning and verification of the collapsed cone convolution superposition algorithm for SBRT delivery using flattening filter-free beams. J Appl Clin Med Phys. 2014;15(2):4631.

    Article  Google Scholar 

  37. Ishii K, Okada W, Ogino R, Kubo K, Kishimoto S, Nakahara R, et al. A treatment-planning comparison of three beam arrangement strategies for stereotactic body radiation therapy for centrally located lung tumors using volumetric-modulated arc therapy. J Radiat Res. 2016;57(3):273–9.

    Article  Google Scholar 

  38. Kim J, Wen N, Jin JY, Walls N, Kim S, Li H, et al. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J Appl Clin Med Phys. 2012;13(3):3729.

    Article  Google Scholar 

  39. Fürweger C, Prins P, Coskan H, Heijmen BJ. Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Med Phys. 2016;43(5):2063.

    Article  Google Scholar 

  40. Schuring D, Hurkmans CW. Developing and evaluating stereotactic lung RT trials: what we should know about the influence of inhomogeneity corrections on dose. Radiat Oncol. 2008;3:21.

    Article  Google Scholar 

  41. Martens C, Reynaert N, De Wagter C, Nilsson P, Coghe M, Palmans H, et al. Underdosage of the upper-airway mucosa for small fields as used in intensity-modulated radiation therapy: a comparison between radiochromic film measurements, Monte Carlo simulations, and collapsed cone convolution calculations. Med Phys. 2002;29(7):1528–35.

    Article  CAS  Google Scholar 

  42. Woo MK, Cunningham JR. The validity of the density scaling method in primary electron transport for photon and electron beams. Med Phys. 1990;17(2):187–94.

    Article  CAS  Google Scholar 

  43. Subramanian SV, Subramani V, Thirumalai Swamy S, Gandhi A, Chilukuri S, Kathirvel M. Is 5 mm MMLC suitable for VMAT-based lung SBRT? A dosimetric comparison with 2.5 mm HDMLC using RTOG-0813 treatment planning criteria for both conventional and high-dose flattening filter-free photon beams. J Appl Clin Med Phys. 2015;16(4):112–24.

    Article  Google Scholar 

  44. Tanyi JA, Summers PA, McCracken CL, Chen Y, Ku LC, Fuss M. Implications of a high-definition multileaf collimator (HD-MLC) on treatment planning techniques for stereotactic body radiation therapy (SBRT): a planning study. Radiat Oncol. 2009;4:22.

    Article  Google Scholar 

  45. Ruschin M, Sahgal A, Iradji S, Soliman H, Leavens C, Lee Y. Investigation of two linac head designs for treating brain metastases with hypofractionated volumetric modulated arc radiotherapy. Br J Radiol. 2016 Jul;89(1063):20160093.

    Article  Google Scholar 

  46. DeLuca P, Jones D, Gahbauer R, Whitmore G, Wambersie A. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU Rep. 2010;83

    Google Scholar 

  47. Menzel HG, DeLuca P, Mackie TR, Boone JM, Brandan ME, Burns DT, et al. ICRU report 91: prescribing, recording, and reporting of stereotactic treatments with small photon beams. J ICRU. 2014;14(2)

    Google Scholar 

  48. Hua C, Chang J, Yenice K, Chan M, Amols H. A practical approach to prevent gantry-couch collision for linac-based radiosurgery. Med Phys. 2004;31(7):2128–34.

    Article  Google Scholar 

  49. Sauer OA. Calculation of dose distributions in the vicinity of high-Z interfaces for photon beams. Med Phys. 1995;22(10):1685–90.

    Article  CAS  Google Scholar 

  50. Vatnisky S, Meghzifene A, Christaki K, Palmans H, Andrew P, Saiful Huq M, et al. IAEA TRS-483. Dosimetry of small fields used in external beam radiotherapy: an international code of practice for reference and relative dose determination. International Atomic Energy Agency. 2017.

    Google Scholar 

  51. Bjärngard BE, Tsai JS, Rice RK. Doses on the central axes of narrow 6-MV x-ray beams. Med Phys. 1990;17(5):794–9.

    Article  Google Scholar 

  52. Sánchez-Doblado F, Hartmann GH, Pena J, Roselló JV, Russiello G, Gonzalez-Castaño DM. A new method for output factor determination in MLC shaped narrow beams. Phys Med. 2007;23(2):58–66.

    Article  Google Scholar 

  53. Alfonso R, Andreo P, Capote R, Huq MS, Kilby W, Kjäll P, et al. A new formalism for reference dosimetry of small and nonstandard fields. Med Phys. 2008;35(11):5179–86.

    Article  CAS  Google Scholar 

  54. Aspradakis MM, Byme H, Palmans S, Duane S, Conway J, Warrington AP, et al. IPEM report 103: small field MV photon dosimetry. 2010.

    Google Scholar 

  55. Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847–70.

    Article  CAS  Google Scholar 

  56. McEwen M, DeWerd L, Ibbott G, Followill D, Rogers DW, Seltzer S, et al. Addendum to the AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon beams. Med Phys. 2014;41(4):041501.

    Article  Google Scholar 

  57. Andreo P, Huq MS, Westermark M, Song H, Tilikidis A, DeWerd L, et al. Protocols for the dosimetry of high-energy photon and electron beams: a comparison of the IAEA TRS-398 and previous international codes of practice. International Atomic Energy Agency. Phys Med Biol. 2002;47(17):3033–53.

    Article  Google Scholar 

  58. Smit K, van Asselen B, Kok JG, Aalbers AH, Lagendijk JJ, Raaymakers BW. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading. Phys Med Biol. 2013;58(17):5945–57.

    Article  CAS  Google Scholar 

  59. Bouchard H, Seuntjens J. Ionization chamber-based reference dosimetry of intensity modulated radiation beams. Med Phys. 2004;31(9):2454–65.

    Article  CAS  Google Scholar 

  60. Agostinelli S, Garelli S, Piergentili M, Foppiano F. Response to high-energy photons of PTW31014 PinPoint ion chamber with a central aluminum electrode. Med Phys. 2008;35(7):3293–301.

    Article  CAS  Google Scholar 

  61. Capote R, Sánchez-Doblado F, Leal A, Lagares JI, Arráns R, Hartmann GH. An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets. Med Phys. 2004;31(9):2416–22.

    Article  CAS  Google Scholar 

  62. Andersson J, Kaiser FJ, Gómez F, Jäkel O, Pardo-Montero J, Tölli H. A comparison of different experimental methods for general recombination correction for liquid ionization chambers. Phys Med Biol. 2012;57(21):7161–75.

    Article  Google Scholar 

  63. Ralston A, Tyler M, Liu P, McKenzie D, Suchowerska N. Over-response of synthetic microDiamond detectors in small radiation fields. Phys Med Biol. 2014;59(19):5873–81.

    Article  Google Scholar 

  64. Westermark M, Arndt J, Nilsson B, Brahme A. Comparative dosimetry in narrow high-energy photon beams. Phys Med Biol. 2000;45(3):685–702.

    Article  CAS  Google Scholar 

  65. Zhu XR, Allen JJ, Shi J, Simon WE. Total scatter factors and tissue maximum ratios for small radiosurgery fields: comparison of diode detectors, a parallel-plate ion chamber, and radiographic film. Med Phys. 2000;27(3):472–7.

    Article  CAS  Google Scholar 

  66. Francescon P, Cora S, Cavedon C, Scalchi P, Reccanello S, Colombo F. Use of a new type of radiochromic film, a new parallel-plate micro-chamber, MOSFETs, and TLD 800 microcubes in the dosimetry of small beams. Med Phys. 1998;25(4):503–11.

    Article  CAS  Google Scholar 

  67. Aguirre JF, Alvarez P, Ibbott GG, Followwill DS, editors. Testing, commissioning, and validating an optically stimulated luminescence (OSL) dosimetry system for mailed dosimetry at the Radiological Physics Center. Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS). Vienna: IAEA; 2010.

    Google Scholar 

  68. Mack A, Scheib SG, Major J, Gianolini S, Pazmandi G, Feist H, et al. Precision dosimetry for narrow photon beams used in radiosurgery-determination of Gamma Knife output factors. Med Phys. 2002;29(9):2080–9.

    Article  Google Scholar 

  69. Pantelis E, Antypas C, Petrokokkinos L, Karaiskos P, Papagiannis P, Kozicki M, et al. Dosimetric characterization of CyberKnife radiosurgical photon beams using polymer gels. Med Phys. 2008;35(6):2312–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Ruschin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, Y., Sarfehnia, A., Ruschin, M. (2019). Physics of Stereotactic Body Radiotherapy. In: Trifiletti, D., Chao, S., Sahgal, A., Sheehan, J. (eds) Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-16924-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16924-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16923-7

  • Online ISBN: 978-3-030-16924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics