Skip to main content

Pericytes in Multiple Sclerosis

  • Chapter
  • First Online:
Pericyte Biology in Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1147))

Abstract

Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease that affects the central nervous system (CNS), particularly, in young adults. Current MS treatments aim to reduce demyelination; however, these have limited efficacy, display side effects and lack of regenerative activities. Oligodendrocyte progenitor cells (OPCs) represents the major source for new myelin. Upon demyelination, OPCs get activated, proliferate, migrate towards the lesion, and differentiate into remyelinating oligodendrocytes. Although myelin repair (remyelination) represents a robust response to myelin damage, during MS, this regenerative phenomenon decays in efficiency or even fails. CNS-resident pericytes (CNS-PCs) are essential for vascular homeostasis regulating blood-brain barrier (BBB) permeability and stability as well as endothelial cells (ECs) function during angiogenesis and neovascularization. Recent studies indicate that CNS-PCs also play a crucial role regulating OPC function during remyelination, and very importantly, these cells are substantially affected in MS. This chapter summarizes important aspects of MS and CNS remyelination as well as it provides new insights supporting the contribution of CNS-PCs to myelin regeneration and to MS pathology. Currently, there is evidence arguing in favor of CNS-PCs as novel therapeutic targets for the development of future treatments for MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood-brain barrier

CC:

Corpus callosum

CNS:

Central nervous system

CNS-PCs:

Central nervous system-resident pericytes

EAE:

Experimental autoimmune encephalomyelitis

ECM:

Extracellular matrix

ECs:

Endothelial cells

FGF:

Fibroblast growth factor

LPC:

Lysophosphatidylcholine

MS:

Multiple sclerosis

MSCs:

Mesenchymal stem cells

MS-PP:

Multiple sclerosis primary progressive

MS-RR:

Multiple sclerosis relapsing-remitting

MS-SP:

Multiple sclerosis secondary progressive

NSCs:

Neural stem cells

NVU:

Neurovascular unit

OB:

Olfactory bulb

OPCs:

Oligodendroglial precursor/progenitor cells

PDGFRalpha:

Platelet-derived growth factor receptor alpha

PDGFRbeta:

Platelet-derived growth factor receptor beta

PLCs:

Pericyte like cells

RMS:

Rostral migratory stream

SVZ:

Subventricular zone

References

  • Alonso, A., & Hernan, M. A. (2008). Temporal trends in the incidence of multiple sclerosis: A systematic review. Neurology, 71, 129–135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. The Journal of Comparative Neurology, 137, 433–457.

    Article  CAS  PubMed  Google Scholar 

  • Altman, J., & Das, G. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. The Journal of Comparative Neurology, 124, 319–335.

    Article  CAS  PubMed  Google Scholar 

  • Altman, J., & Das, G. D. (1964). Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature, 204, 1161–1163.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla, A., & Garcia-Verdugo, J. M. (2002). Neurogenesis in adult subventricular zone. The Journal of Neuroscience, 22, 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armulik, A., Abramsson, A., & Betsholtz, C. (2005). Endothelial/pericyte interactions. Circulation Research, 97, 512–523.

    Article  CAS  PubMed  Google Scholar 

  • Armulik, A., Genove, G., Mae, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., et al. (2010a). Pericytes regulate the blood-brain barrier. Nature, 468, 557–561.

    Article  CAS  PubMed  Google Scholar 

  • Armulik, A., Genové, G., Mäe, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., et al. (2010b). Pericytes regulate the blood–brain barrier. Nature, 468, 557–561.

    Article  CAS  PubMed  Google Scholar 

  • Arnett, H. A., Fancy, S. P., Alberta, J. A., Zhao, C., Plant, S. R., Kaing, S., Raine, C. S., Rowitch, D. H., Franklin, R. J., & Stiles, C. D. (2004). bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science, 306, 2111–2115.

    Article  CAS  PubMed  Google Scholar 

  • Azevedo, P. O., Sena, I. F. G., Andreotti, J. P., Carvalho-Tavares, J., Alves, J. C., Cunha, T. M., Cunha, F. Q., Mintz, A., & Birbrair, A. (2018). Pericytes modulate myelination in the central nervous system. Journal of Cellular Physiology, 233, 5523–5529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, R. D., Winkler, E. A., Sagare, A. P., Singh, I., LaRue, B., Deane, R., & Zlokovic, B. V. (2010). Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron, 68, 409–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakemore, W. F. (1972). Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. Journal of Neurocytology, 1, 413–426.

    Article  CAS  PubMed  Google Scholar 

  • Blakemore, W. F. (1973). Demyelination of the superior cerebellar peduncle in the mouse induced by cuprizone. Journal of the Neurological Sciences, 20, 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Blakemore, W. F. (1974). Pattern of remyelination in the CNS. Nature, 249, 577–578.

    Article  CAS  PubMed  Google Scholar 

  • Bondjers, C., He, L., Takemoto, M., Norlin, J., Asker, N., Hellstrom, M., Lindahl, P., & Betsholtz, C. (2006). Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. The FASEB Journal, 20, 1703–1705.

    Article  CAS  PubMed  Google Scholar 

  • Brahic, M. (2002). Theiler’s virus infection of the mouse, or: Of the importance of studying animal models. Virology, 301, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Broman, T. (1964). Blood-brain barrier damage in multiple sclerosis, supravital test observations. Acta Neurologica Scandinavica, 40, 21–24.

    Article  Google Scholar 

  • Bruce, C. C., Zhao, C., & Franklin, R. J. (2010). Remyelination – An effective means of neuroprotection. Hormones and Behavior, 57, 56–62.

    Article  CAS  PubMed  Google Scholar 

  • Carleton, A., Petreanu, L. T., Lansford, R., Alvarez-Buylla, A., & Lledo, P.-M. (2003). Becoming a new neuron in the adult olfactory bulb. Nature Neuroscience, 6, 507–518.

    Article  CAS  PubMed  Google Scholar 

  • Compston, A., & Coles, A. (2008). Multiple sclerosis. Lancet, 372, 1502–1517.

    Article  CAS  PubMed  Google Scholar 

  • Connick, P., Kolappan, M., Crawley, C., Webber, D. J., Patani, R., Michell, A. W., Du, M. Q., Luan, S. L., Altmann, D. R., Thompson, A. J., et al. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: An open-label phase 2a proof-of-concept study. Lancet Neurology, 11, 150–156.

    Article  PubMed  Google Scholar 

  • Crawford, A. H., Chambers, C., & Franklin, R. J. M. (2013). Remyelination: The true regeneration of the central nervous system. Journal of Comparative Pathology, 149, 242–254.

    Article  CAS  PubMed  Google Scholar 

  • Crockett, D. P., Burshteyn, M., Garcia, C., Muggironi, M., & Casaccia-Bonnefil, P. (2005). Number of oligodendrocyte progenitors recruited to the lesioned spinal cord is modulated by the levels of the cell cycle regulatory protein p27Kip-1. Glia, 49, 301–308.

    Article  PubMed  Google Scholar 

  • Dal Canto, M. C., & Rabinowitz, S. G. (1982). Experimental models of virus-induced demyelination of the central nervous system. Annals of Neurology, 11, 109–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson, M. R., Levine, J. M., & Reynolds, R. (2000). NG2-expressing cells in the central nervous system: Are they oligodendroglial progenitors? Journal of Neuroscience Research, 61, 471–479.

    Article  CAS  PubMed  Google Scholar 

  • De La Fuente, A. G., Lange, S., Silva, M. E., Gonzalez, G. A., Tempfer, H., van Wijngaarden, P., Zhao, C., Di Canio, L., Trost, A., Bieler, L., et al. (2017). Pericytes stimulate oligodendrocyte progenitor cell differentiation during CNS remyelination. Cell Reports, 20, 1755–1764.

    Article  CAS  Google Scholar 

  • Diaz-Flores, L., Gutierrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., Martin-Vasallo, P., & Diaz-Flores, L. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 24, 909–969.

    CAS  PubMed  Google Scholar 

  • Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics & Development, 13, 543–550.

    Article  CAS  Google Scholar 

  • Doetsch, F., & Alvarez-Buylla, A. (1996). Network of tangential pathways for neuronal migration in adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 93, 14895–14900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97, 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Doetsch, F., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. The Journal of Neuroscience, 17, 5046–5061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doetsch, F., & Scharff, C. (2001). Challenges for brain repair: Insights from adult neurogenesis in birds and mammals. Brain, Behavior and Evolution, 58, 306–322.

    Article  CAS  PubMed  Google Scholar 

  • Dore-Duffy, P. (2008). Pericytes: Pluripotent cells of the blood brain barrier. Current Pharmaceutical Design, 14, 1581–1593.

    Article  CAS  PubMed  Google Scholar 

  • Dore-Duffy, P., & Cleary, K. (2011). Morphology and properties of pericytes. Methods in Molecular Biology, 686, 49–68.

    Article  CAS  PubMed  Google Scholar 

  • Ebers, G. C., & Sadovnick, A. D. (1993). The geographic distribution of multiple sclerosis: A review. Neuroepidemiology, 12, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • ElAli, A., Thériault, P., & Rivest, S. (2014). The role of pericytes in neurovascular unit remodeling in brain disorders. International Journal of Molecular Sciences, 15, 6453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esen, N., Serkin, Z., & Dore-Duffy, P. (2013). Induction of vascular remodeling: A novel therapeutic approach in EAE. Journal of the Neurological Sciences, 333, 88–92.

    Article  CAS  PubMed  Google Scholar 

  • Fancy, S. P., Zhao, C., & Franklin, R. J. (2004). Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Molecular and Cellular Neurosciences, 27, 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, A. R., Hook, M. A., Garcia, G., Bresnahan, J. C., Beattie, M. S., & Grau, J. W. (2004). A simple post hoc transformation that improves the metric properties of the BBB scale for rats with moderate to severe spinal cord injury. Journal of Neurotrauma, 21, 1601–1613.

    Article  PubMed  Google Scholar 

  • Ffrench-Constant, C., & Raff, M. C. (1986a). The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination. Nature, 323, 335–338.

    Article  CAS  PubMed  Google Scholar 

  • Ffrench-Constant, C., & Raff, M. C. (1986b). Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature, 319, 499–502.

    Article  CAS  PubMed  Google Scholar 

  • Franklin, R. J., & Ffrench-Constant, C. (2008). Remyelination in the CNS: From biology to therapy. Nature Reviews. Neuroscience, 9, 839–855.

    Article  CAS  PubMed  Google Scholar 

  • Franklin, R. J., & Hinks, G. L. (1999). Understanding CNS remyelination: Clues from developmental and regeneration biology. Journal of Neuroscience Research, 58, 207–213.

    Article  CAS  PubMed  Google Scholar 

  • Franklin, R. J., & Kotter, M. R. (2008). The biology of CNS remyelination: The key to therapeutic advances. Journal of Neurology, 255(Suppl 1), 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Fünfschilling, U., Supplie, L. M., Mahad, D., Boretius, S., Saab, A. S., Edgar, J., Brinkmann, B. G., Kassmann, C. M., Tzvetanova, I. D., Möbius, W., et al. (2012). Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 485, 517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaceb, A., Özen, I., Padel, T., Barbariga, M., & Paul, G. (2017). Pericytes secrete pro-regenerative molecules in response to platelet-derived growth factor-BB. Journal of Cerebral Blood Flow & Metabolism, 38, 45–57.

    Article  Google Scholar 

  • Gage, F. H. (2000). Mammalian neural stem cells. Science, 287, 1433–1438.

    Article  CAS  PubMed  Google Scholar 

  • Gensert, J. M., & Goldman, J. E. (1997). Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron, 19, 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Grygorowicz, T., DÄ…browska-Bouta, B., & StrużyÅ„ska, L. (2018). Administration of an antagonist of P2X7 receptor to EAE rats prevents a decrease of expression of claudin-5 in cerebral capillaries. Purinergic Signalling, 14(4), 385–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gündüz, T., Tanyel Kiremitçi, T., Ulusoy, C., Kürtüncü, M., & TürkoÄŸlu, R. (2018). Cerebrospinal fluid analysis of pericytic mediators in clinically isolated syndrome and multiple sclerosis: A preliminary study. Journal of Experimental Medicine, 81, 18–22.

    Google Scholar 

  • Hellstrom, M., Gerhardt, H., Kalen, M., Li, X., Eriksson, U., Wolburg, H., & Betsholtz, C. (2001). Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. The Journal of Cell Biology, 153, 543–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoftberger, R., & Lassmann, H. (2017). Inflammatory demyelinating diseases of the central nervous system. Handbook of Clinical Neurology, 145, 263–283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iacobaeus, E., Sugars, R. V., Andrén, A. T., Alm, J. J., Qian, H., Frantzen, J., Newcombe, J., Alkass, K., Druid, H., Bottai, M., Röyttä, M., Le Blanc, K. (2017). Dynamic Changes in Brain Mesenchymal Perivascular Cells Associate with Multiple Sclerosis Disease Duration, Active Inflammation, and Demyelination. Stem Cells Translational Medicine, 6(10),1840–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonska, B., Aguirre, A., Raymond, M., Szabo, G., Kitabatake, Y., Sailor, K. A., Ming, G. L., Song, H., & Gallo, V. (2010). Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nature Neuroscience, 13, 541–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadasz, J. J., Aigner, L., Rivera, F. J., & Kury, P. (2012). The remyelination Philosopher’s Stone: Stem and progenitor cell therapies for multiple sclerosis. Cell and Tissue Research, 349(1), 331–347.

    Article  CAS  PubMed  Google Scholar 

  • Kabat, E. A., Wolf, A., Bezer, A. E., & Murray, J. P. (1951). Studies on acute disseminated encephalomyelitis produced experimentally in rhesus monkeys. The Journal of Experimental Medicine, 93, 615–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamouchi, M., Ago, T., & Kitazono, T. (2011). Brain pericytes: Emerging concepts and functional roles in brain homeostasis. Cellular and Molecular Neurobiology, 31, 175–193.

    Article  PubMed  Google Scholar 

  • Keirstead, H. S., Levine, J. M., & Blakemore, W. F. (1998). Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia, 22, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Kesterson, J. W., & Carlton, W. W. (1971). Histopathologic and enzyme histochemical observations of the cuprizone-induced brain edema. Experimental and Molecular Pathology, 15, 82–96.

    Article  CAS  PubMed  Google Scholar 

  • Komoly, S., Jeyasingham, M. D., Pratt, O. E., & Lantos, P. L. (1987). Decrease in oligodendrocyte carbonic anhydrase activity preceding myelin degeneration in cuprizone induced demyelination. Journal of the Neurological Sciences, 79, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Kornek, B., & Lassmann, H. (2003). Neuropathology of multiple sclerosis-new concepts. Brain Research Bulletin, 61, 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy, G., & Wekerle, H. (2009). EAE: An immunologist’s magic eye. European Journal of Immunology, 39, 2031–2035.

    Article  CAS  PubMed  Google Scholar 

  • Krizbai, I. A., Bauer, H., Amberger, A., Hennig, B., Szabo, H., Fuchs, R., & Bauer, H. C. (2000). Growth factor-induced morphological, physiological and molecular characteristics in cerebral endothelial cells. European Journal of Cell Biology, 79, 594–600.

    Article  CAS  PubMed  Google Scholar 

  • Kuchroo, V. K., Anderson, A. C., Waldner, H., Munder, M., Bettelli, E., & Nicholson, L. B. (2002). T cell response in experimental autoimmune encephalomyelitis (EAE): Role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annual Review of Immunology, 20, 101–123.

    Article  CAS  PubMed  Google Scholar 

  • Lange, S., Trost, A., Tempfer, H., Bauer, H. C., Bauer, H., Rohde, E., Reitsamer, H. A., Franklin, R. J., Aigner, L., & Rivera, F. J. (2013). Brain pericyte plasticity as a potential drug target in CNS repair. Drug Discovery Today, 18, 456–463.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, P. H., Wells, J. E., Stallcup, W. B., Opdenakker, G., & Yong, V. W. (2003). Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. The Journal of Neuroscience, 23, 11127–11135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassmann, H. (2007a). Experimental models of multiple sclerosis. Revue Neurologique (Paris), 163, 651–655.

    Article  CAS  Google Scholar 

  • Lassmann, H. (2007b). Multiple sclerosis: Is there neurodegeneration independent from inflammation? Journal of the Neurological Sciences, 259, 3–6.

    Article  CAS  PubMed  Google Scholar 

  • Lassmann, H., Bruck, W., Lucchinetti, C., & Rodriguez, M. (1997). Remyelination in multiple sclerosis. Multiple Sclerosis, 3, 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Lassmann, H., van Horssen, J., & Mahad, D. (2012). Progressive multiple sclerosis: Pathology and pathogenesis. Nature Reviews. Neurology, 8, 647–656.

    Article  CAS  PubMed  Google Scholar 

  • Levine, J. M., & Reynolds, R. (1999). Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Experimental Neurology, 160, 333–347.

    Article  CAS  PubMed  Google Scholar 

  • Levine, J. M., Reynolds, R., & Fawcett, J. W. (2001). The oligodendrocyte precursor cell in health and disease. Trends in Neurosciences, 24, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, P., Johansson, B. R., Leveen, P., & Betsholtz, C. (1997). Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 277, 242–245.

    Article  CAS  PubMed  Google Scholar 

  • Lois, C., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (1996). Chain migration of neuronal precursors. Science, 271, 978–981.

    Article  CAS  PubMed  Google Scholar 

  • Lublin, F. D., & Reingold, S. C. (1996). Defining the clinical course of multiple sclerosis: Results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology, 46, 907–911.

    Article  CAS  PubMed  Google Scholar 

  • Ludwin, S. K. (1978). Central nervous system demyelination and remyelination in the mouse: An ultrastructural study of cuprizone toxicity. Laboratory Investigation, 39, 597–612.

    CAS  PubMed  Google Scholar 

  • Ludwin, S. K., & Maitland, M. (1984). Long-term remyelination fails to reconstitute normal thickness of central myelin sheaths. Journal of the Neurological Sciences, 64, 193–198.

    Article  CAS  PubMed  Google Scholar 

  • Maki, T., Maeda, M., Uemura, M., Lo, E. K., Terasaki, Y., Liang, A. C., Shindo, A., Choi, Y. K., Taguchi, A., Matsuyama, T., et al. (2015). Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter. Neuroscience Letters, 597, 164–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushima, G. K., & Morell, P. (2001). The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathology, 11, 107–116.

    Article  CAS  PubMed  Google Scholar 

  • Menn, B., Garcia-Verdugo, J. M., Yaschine, C., Gonzalez-Perez, O., Rowitch, D., & Alvarez-Buylla, A. (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. The Journal of Neuroscience, 26, 7907–7918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagne, A., Nikolakopoulou, A. M., Zhao, Z., Sagare, A. P., Si, G., Lazic, D., Barnes, S. R., Daianu, M., Ramanathan, A., Go, A., et al. (2018). Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nature Medicine, 24, 326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murtie, J. C., Zhou, Y. X., Le, T. Q., Vana, A. C., & Armstrong, R. C. (2005). PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiology of Disease, 19, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Nait-Oumesmar, B., Decker, L., Lachapelle, F., Avellana-Adalid, V., Bachelin, C., & Van Evercooren, A. B. (1999). Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. The European Journal of Neuroscience, 11, 4357–4366.

    Article  CAS  PubMed  Google Scholar 

  • Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B. G. (2000). Multiple sclerosis. The New England Journal of Medicine, 343, 938–952.

    Article  CAS  PubMed  Google Scholar 

  • Orton, S. M., Herrera, B. M., Yee, I. M., Valdar, W., Ramagopalan, S. V., Sadovnick, A. D., & Ebers, G. C. (2006). Sex ratio of multiple sclerosis in Canada: A longitudinal study. Lancet Neurology, 5, 932–936.

    Article  PubMed  Google Scholar 

  • Peppiatt, C. M., Howarth, C., Mobbs, P., & Attwell, D. (2006). Bidirectional control of CNS capillary diameter by pericytes. Nature, 443, 700–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quaegebeur, A., Segura, I., & Carmeliet, P. (2010). Pericytes: Blood-brain barrier safeguards against neurodegeneration? Neuron, 68, 321–323.

    Article  CAS  PubMed  Google Scholar 

  • Raff, M. C., Miller, R. H., & Noble, M. (1983). A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature, 303, 390–396.

    Article  CAS  PubMed  Google Scholar 

  • Raff, M. C., Williams, B. P. A., & Miller, R. H. (1984). The in vitro differentiation of a bipotential glial progenitor cell. The EMBO Journal, 3, 1857–1864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramagopalan, S. V., Dobson, R., Meier, U. C., & Giovannoni, G. (2010). Multiple sclerosis: Risk factors, prodromes, and potential causal pathways. Lancet Neurology, 9, 727–739.

    Article  PubMed  Google Scholar 

  • Redwine, J. M., & Armstrong, R. C. (1998). In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. Journal of Neurobiology, 37, 413–428.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, R., Dawson, M., Papadopoulos, D., Polito, A., Di Bello, I. C., Pham-Dinh, D., & Levine, J. (2002). The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. Journal of Neurocytology, 31, 523–536.

    Article  PubMed  Google Scholar 

  • Ribatti, D., Nico, B., & Crivellato, E. (2011). The role of pericytes in angiogenesis. The International Journal of Developmental Biology, 55, 261–268.

    Article  CAS  PubMed  Google Scholar 

  • Rinholm, J. E., Hamilton, N. B., Kessaris, N., Richardson, W. D., Bergersen, L. H., & Attwell, D. (2011). Regulation of oligodendrocyte development and myelination by glucose and lactate. The Journal of Neuroscience, 31, 538–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera, F. J., & Aigner, L. (2012). Adult mesenchymal stem cell therapy for myelin repair in multiple sclerosis. Biological Research, 45, 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Rivera, F. J., Steffenhagen, C., Kremer, D., Kandasamy, M., Sandner, B., Couillard-Despres, S., Weidner, N., Kury, P., & Aigner, L. (2010). Deciphering the oligodendrogenic program of neural progenitors: Cell intrinsic and extrinsic regulators. Stem Cells and Development, 19, 595–606.

    Article  CAS  PubMed  Google Scholar 

  • Rouget, C.-M. B. (1874). Note sur le developpement de la tunique contractile des vaisseaux. Comptes Rendus de l’Académie des Sciences, 59, 4.

    Google Scholar 

  • Ruckh, J. M., Zhao, J.-W., Shadrach, J. L., van Wijngaarden, P., Rao, T. N., Wagers, A. J., & Franklin, R. J. M. (2012). Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell, 10, 96–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheikl, T., Pignolet, B., Mars, L. T., & Liblau, R. S. (2010). Transgenic mouse models of multiple sclerosis. Cellular and Molecular Life Sciences, 67, 4011–4034.

    Article  CAS  PubMed  Google Scholar 

  • Schonrock, L. M., Kuhlmann, T., Adler, S., Bitsch, A., & Bruck, W. (1998). Identification of glial cell proliferation in early multiple sclerosis lesions. Neuropathology and Applied Neurobiology, 24, 320–330.

    Article  CAS  PubMed  Google Scholar 

  • Shen, S., Sandoval, J., Swiss, V. A., Li, J., Dupree, J., Franklin, R. J., & Casaccia-Bonnefil, P. (2008). Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nature Neuroscience, 11, 1024–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields, S. A., Gilson, J. M., Blakemore, W. F., & Franklin, R. J. (1999). Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia, 28, 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Silva, M. E., Lange, S., Hinrichsen, B., Philp, A. R., Reyes, C. R., Halabi, D., Mansilla, J. B., Rotheneichner, P., De la Fuente, A. G., Couillard-Despres, S., Bátiz, L. F., Franklin, R. J. M., Aigner, L., Francisco, J., & Rivera, F. J. (2019). Pericytes favor oligodendrocyte fate choice in adult neural stem cells. Frontiers in Cellular Neuroscience, https://doi.org/10.3389/fncel.2019.00085.

  • Silvestroff, L., Bartucci, S., Soto, E., Gallo, V., Pasquini, J., & Franco, P. (2010). Cuprizone-induced demyelination in CNP::GFP transgenic mice. The Journal of Comparative Neurology, 518, 2261–2283.

    Article  CAS  PubMed  Google Scholar 

  • Sim, F. J., Zhao, C., Penderis, J., & Franklin, R. J. (2002). The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. The Journal of Neuroscience, 22, 2451–2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skripuletz, T., Lindner, M., Kotsiari, A., Garde, N., Fokuhl, J., Linsmeier, F., Trebst, C., & Stangel, M. (2008). Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. The American Journal of Pathology, 172, 1053–1061.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, K. J., McDonald, W. I., & Blakemore, W. F. (1979). Restoration of secure conduction by central demyelination. Transactions of the American Neurological Association, 104, 25–29.

    CAS  PubMed  Google Scholar 

  • Takakuni Maki, Y. K. C., Miyamoto, N., Shindo, A., Liang, A. C., Ahn, B. J. U., Mandeville, E. T., Kaji, S., Itoh, K., Seo, J. I. H., Gelman, I. H., Lok, J., Takahashi, R., Kim, K.-W., Lo, E. H., & Arai, K. (2018). A-kinase anchor protein 12 is required for oligodendrocyte differentiation in adult white matter. Stem Cells Translational Medicine, 36, 751–760.

    Article  CAS  Google Scholar 

  • Takata, F., Dohgu, S., Nishioku, T., Takahashi, H., Harada, E., Makino, I., Nakashima, M., Yamauchi, A., & Kataoka, Y. (2009). Adrenomedullin-induced relaxation of rat brain pericytes is related to the reduced phosphorylation of myosin light chain through the cAMP/PKA signaling pathway. Neuroscience Letters, 449, 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Tigges, U., Boroujerdi, A., Welser-Alves, J. V., & Milner, R. (2013). TNF-α promotes cerebral pericyte remodeling in vitro, via a switch from α1 to α2 integrins. Journal of Neuroinflammation, 10, 33–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tintore, M., Vidal-Jordana, A., & Sastre-Garriga, J. (2019). Treatment of multiple sclerosis – success from bench to bedside. Nature Reviews Neurology, 15(1), 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, H.-H., Niu, J., Munji, R., Davalos, D., Chang, J., Zhang, H., Tien, A.-C., Kuo, C. J., Chan, J. R., Daneman, R., et al. (2016). Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science, 351, 379–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanlandewijck, M., He, L., Mae, M. A., Andrae, J., Ando, K., Del Gaudio, F., Nahar, K., Lebouvier, T., Lavina, B., Gouveia, L., et al. (2018). Author Correction: A molecular atlas of cell types and zonation in the brain vasculature. Nature, 560, E3.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, M., Toyama, Y., & Nishiyama, A. (2002). Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. Journal of Neuroscience Research, 69, 826–836.

    Article  CAS  PubMed  Google Scholar 

  • Whitacre, C. C. (2001). Sex differences in autoimmune disease. Nature Immunology, 2, 777–780.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, H. C., Scolding, N. J., & Raine, C. S. (2006). Co-expression of PDGF alpha receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. Journal of Neuroimmunology, 176, 162–173.

    Article  CAS  PubMed  Google Scholar 

  • Winkler, E. A., Bell, R. D., & Zlokovic, B. V. (2011). Central nervous system pericytes in health and disease. Nature Neuroscience, 14, 1398–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolswijk, G., & Noble, M. (1989). Identification of an adult-specific glial progenitor cell. Development, 105, 387–400.

    CAS  PubMed  Google Scholar 

  • Woodruff, R. H., & Franklin, R. J. (1999). Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: A comparative study. Glia, 25, 216–228.

    Article  CAS  PubMed  Google Scholar 

  • Woodruff, R. H., Fruttiger, M., Richardson, W. D., & Franklin, R. J. M. (2004). Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Molecular and Cellular Neuroscience, 25, 252–262.

    Article  CAS  PubMed  Google Scholar 

  • Yemisci, M., Gursoy-Ozdemir, Y., Vural, A., Can, A., Topalkara, K., & Dalkara, T. (2009). Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nature Medicine, 15, 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Zawadzka, M., Rivers, L. E., Fancy, S. P., Zhao, C., Tripathi, R., Jamen, F., Young, K., Goncharevich, A., Pohl, H., Rizzi, M., et al. (2010). CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell, 6, 578–590.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S. C., Ge, B., & Duncan, I. D. (1999). Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proceedings of the National Academy of Sciences of the United States of America, 96, 4089–4094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y. X., Flint, N. C., Murtie, J. C., Le, T. Q., & Armstrong, R. C. (2006). Retroviral lineage analysis of fibroblast growth factor receptor signaling in FGF2 inhibition of oligodendrocyte progenitor differentiation. Glia, 54, 578–590.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, K. W. (1923). Der feinere Bau der Blutkapillaren. Zeitschrift für Anatomie und Entwicklungsgeschichte, 68, 5.

    Article  Google Scholar 

  • Zlokovic, B. V. (2008). The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 57, 178–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research funds from Chilean Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) FONDECYT Program Regular Grant Nº 1161787; Chilean CONICYT PCI Program Grant Nº REDES170233 and Grant Nº REDES180139; Chilean CONICYT FONDEF-IDeA Program Grant Nº ID17AM0043; Chilean CONICYT Doctoral Scholarship 21171884.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivera, F.J., Hinrichsen, B., Silva, M.E. (2019). Pericytes in Multiple Sclerosis. In: Birbrair, A. (eds) Pericyte Biology in Disease. Advances in Experimental Medicine and Biology, vol 1147. Springer, Cham. https://doi.org/10.1007/978-3-030-16908-4_8

Download citation

Publish with us

Policies and ethics