Skip to main content

Pericytes in Breast Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1147))

Abstract

Breast cancer is a heterogeneous disease driven not only by evolutionally diverse cancer cell themselves but also by highly dynamic microenvironment. At the center of the tumor microenvironment, tumor vasculature plays multiple roles from supporting tumor growth to providing a route for metastasis to the distant organ sites. Blood vessels in breast cancer present with perfusion defects associated with vessel dilation, tortuosity, and poor perivascular coverage (Li et al., Ultrasound Med 32:1145–1155, 2013; Eberhard et al., Cancer Res 60:1388–1393, 2000; Cooke et al., Cancer Cell 21:66–81, 2012). Such abnormal vascular system is partly due to the morphological and molecular alteration of pericytes that is accompanied by a significant heterogeneity within the populations (Kim et al., JCI Insight 1:e90733, 2016). While pericytes are implicated for their controversial roles in breast cancer metastasis (Cooke et al., Cancer Cell 21:66–81, 2012; Gerhardt and Semb, J Mol Med (Berl) 86:135–144, 2008; Keskin et al., Cell Rep 10:1066–1081, 2015; Meng et al., Future Oncol 11:169–179, 2015; Xian et al., J Clin Invest 116:642–651, 2006), the impact of their heterogeneity on breast cancer progression, metastasis, intratumoral immunity, and response to chemotherapy are largely unknown. Due to the complexity of angiogenic programs of breast cancer, the anti-angiogenic or anti-vascular treatment has been mostly unsuccessful (Tolaney et al., Proc Natl Acad Sci U S A 112:14325–14330, 2015; Mackey et al., Cancer Treat Rev 38:673–688, 2012; Sledge, J Clin Oncol 33:133–135, 2015) and requires much in-depth knowledge on different components of tumor microenvironment and how these stromal cells are interacting and communicating to each other. Therefore, understanding pericyte heterogeneity and their differential functional contribution will shed light on new potential approaches to treat breast cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aalders, K. C., et al. (2017). Anti-angiogenic treatment in breast cancer: Facts, successes, failures and future perspectives. Cancer Treatment Reviews, 53, 98–110.

    Article  CAS  PubMed  Google Scholar 

  • Abramsson, A., et al. (2002). Analysis of mural cell recruitment to tumor vessels. Circulation, 105(1), 112–117.

    Article  CAS  PubMed  Google Scholar 

  • Armulik, A., Genove, G., & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21(2), 193–215.

    Article  CAS  PubMed  Google Scholar 

  • Ballabh, P., Braun, A., & Nedergaard, M. (2004). The blood-brain barrier: An overview: Structure, regulation, and clinical implications. Neurobiology of Disease, 16(1), 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Benjamin, L. E. (2001). Glucose, VEGF-A, and diabetic complications. The American Journal of Pathology, 158(4), 1181–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin, L. E., et al. (1999). Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. The Journal of Clinical Investigation, 103(2), 159–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergers, G., & Song, S. (2005). The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology, 7(4), 452–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergers, G., et al. (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. The Journal of Clinical Investigation, 111(9), 1287–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., et al. (2014a). Type-2 pericytes participate in normal and tumoral angiogenesis. American Journal of Physiology: Cell Physiology, 307(1), C25–C38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., et al. (2014b). Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Research & Therapy, 5(6), 122.

    Article  Google Scholar 

  • Bos, R., et al. (2001). Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. Journal of the National Cancer Institute, 93(4), 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, C., et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1), 69–82.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, L., et al. (2013). Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell, 153(1), 139–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke, V. G., et al. (2012). Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell, 21(1), 66–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisan, M., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.

    Article  CAS  PubMed  Google Scholar 

  • Du, R., et al. (2008). HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 13(3), 206–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhard, A., et al. (2000). Heterogeneity of angiogenesis and blood vessel maturation in human tumors: Implications for antiangiogenic tumor therapies. Cancer Research, 60(5), 1388–1393.

    CAS  PubMed  Google Scholar 

  • Enge, M., et al. (2002). Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. The EMBO Journal, 21(16), 4307–4316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9(3), 162–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt, H., & Betsholtz, C. (2003). Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research, 314(1), 15–23.

    Article  PubMed  Google Scholar 

  • Gerhardt, H., & Semb, H. (2008). Pericytes: Gatekeepers in tumour cell metastasis? Journal of Molecular Medicine (Berlin, Germany), 86(2), 135–144.

    Article  Google Scholar 

  • Goel, S., Wong, A. H., & Jain, R. K. (2012). Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harbor Perspectives in Medicine, 2(3), a006486.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall, A. P. (2006). Review of the pericyte during angiogenesis and its role in cancer and diabetic retinopathy. Toxicologic Pathology, 34(6), 763–775.

    Article  CAS  PubMed  Google Scholar 

  • Hamzah, J., et al. (2008). Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature, 453(7193), 410–414.

    Article  CAS  PubMed  Google Scholar 

  • Hasumi, Y., et al. (2007). Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. International Journal of Cancer, 121(12), 2606–2614.

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom, M., et al. (1999). Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126(14), 3047–3055.

    CAS  PubMed  Google Scholar 

  • Hong, J., et al. (2015). Role of tumor pericytes in the recruitment of myeloid-derived suppressor cells. Journal of the National Cancer Institute, 107(10). https://doi.org/10.1093/jnci/djv209.

    Article  PubMed  Google Scholar 

  • Hosaka, K., et al. (2016). Pericyte-fibroblast transition promotes tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 113(38), E5618–E5627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jubb, A. M., et al. (2011). Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases. British Journal of Cancer, 104(12), 1877–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keskin, D., et al. (2015). Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Reports, 10(7), 1066–1081.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., et al. (2016). Heterogeneous perivascular cell coverage affects breast cancer metastasis and response to chemotherapy. JCI Insight, 1(21), e90733.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y. J., et al. (2013). Perfusion heterogeneity in breast tumors for assessment of angiogenesis. Journal of Ultrasound in Medicine, 32(7), 1145–1155.

    Article  PubMed  Google Scholar 

  • Lin, S. L., et al. (2008). Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. The American Journal of Pathology, 173(6), 1617–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyle, L. T., et al. (2016). Alterations in pericyte subpopulations are associated with elevated blood-tumor barrier permeability in experimental brain metastasis of breast cancer. Clinical Cancer Research, 22(21), 5287–5299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackey, J. R., et al. (2012). Controlling angiogenesis in breast cancer: A systematic review of anti-angiogenic trials. Cancer Treatment Reviews, 38(6), 673–688.

    Article  CAS  PubMed  Google Scholar 

  • Meng, M. B., et al. (2015). Pericytes: A double-edged sword in cancer therapy. Future Oncology, 11(1), 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Morikawa, S., et al. (2002). Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. The American Journal of Pathology, 160(3), 985–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murgai, M., et al. (2017). KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nature Medicine, 23(10), 1176–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisancioglu, M. H., Betsholtz, C., & Genove, G. (2010). The absence of pericytes does not increase the sensitivity of tumor vasculature to vascular endothelial growth factor-A blockade. Cancer Research, 70(12), 5109–5115.

    Article  CAS  PubMed  Google Scholar 

  • Ostman, A., & Heldin, C. H. (2007). PDGF receptors as targets in tumor treatment. Advances in Cancer Research, 97, 247–274.

    Article  PubMed  Google Scholar 

  • Paiva, A. E., et al. (2018). Pericytes in the premetastatic niche. Cancer Research, 78(11), 2779–2786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsson, J., et al. (2009). Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. The American Journal of Pathology, 175(1), 334–341.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pietras, A., et al. (2008). High levels of HIF-2alpha highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche. The Journal of Pathology, 214(4), 482–488.

    Article  CAS  PubMed  Google Scholar 

  • Rajantie, I., et al. (2004). Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood, 104(7), 2084–2086.

    Article  CAS  PubMed  Google Scholar 

  • Rangasamy, S., et al. (2011). A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Investigative Ophthalmology & Visual Science, 52(6), 3784–3791.

    Article  CAS  Google Scholar 

  • Raza, A., Franklin, M. J., & Dudek, A. Z. (2010). Pericytes and vessel maturation during tumor angiogenesis and metastasis. American Journal of Hematology, 85(8), 593–598.

    Article  CAS  PubMed  Google Scholar 

  • Sennino, B., et al. (2007). Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Research, 67(15), 7358–7367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy, A. K., et al. (2016). Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. The Journal of Clinical Investigation, 126(11), 4174–4186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrivastav, S., et al. (2016). Tumor angiogenesis in breast cancer: Pericytes and maturation does not correlate with lymph node metastasis and molecular subtypes. Clinical Breast Cancer, 16(2), 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Sims, D. E. (2000). Diversity within pericytes. Clinical and Experimental Pharmacology & Physiology, 27(10), 842–846.

    Article  CAS  Google Scholar 

  • Sledge, G. W. (2015). Anti-vascular endothelial growth factor therapy in breast cancer: Game over? Journal of Clinical Oncology, 33(2), 133–135.

    Article  CAS  PubMed  Google Scholar 

  • Song, S., et al. (2005). PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nature Cell Biology, 7(9), 870–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, Y., Nagai, N., & Umemura, K. (2016). A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Frontiers in Cellular Neuroscience, 10, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, L., et al. (2017). Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature, 544(7649), 250–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolaney, S. M., et al. (2015). Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 112(46), 14325–14330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viski, C., et al. (2016). Endosialin-expressing pericytes promote metastatic dissemination. Cancer Research, 76(18), 5313–5325.

    Article  CAS  PubMed  Google Scholar 

  • Weidner, N., et al. (1991). Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. The New England Journal of Medicine, 324(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Xian, X., et al. (2006). Pericytes limit tumor cell metastasis. The Journal of Clinical Investigation, 116(3), 642–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Z., et al. (2016). GT198 expression defines mutant tumor stroma in human breast cancer. The American Journal of Pathology, 186(5), 1340–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiha Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J. (2019). Pericytes in Breast Cancer. In: Birbrair, A. (eds) Pericyte Biology in Disease. Advances in Experimental Medicine and Biology, vol 1147. Springer, Cham. https://doi.org/10.1007/978-3-030-16908-4_3

Download citation

Publish with us

Policies and ethics