Skip to main content

Pericytes in Muscular Dystrophies

  • Chapter
  • First Online:
Pericyte Biology in Disease

Abstract

The muscular dystrophies are an heterogeneous group of inherited myopathies characterised by the progressive wasting of skeletal muscle tissue. Pericytes have been shown to make muscle in vitro and to contribute to skeletal muscle regeneration in several animal models, although recent data has shown this to be controversial. In fact, some pericyte subpopulations have been shown to contribute to fibrosis and adipose deposition in muscle. In this chapter, we explore the identity and the multifaceted role of pericytes in dystrophic muscle, potential therapeutic applications and the current need to overcome the hurdles of characterisation (both to identify pericyte subpopulations and track cell fate), to prevent deleterious differentiation towards myogenic-inhibiting subpopulations, and to improve cell proliferation and engraftment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Ahmad, A., Taboada, C. B., Gassmann, M., & Ogunshola, O. O. (2011). Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. Journal of Cerebral Blood Flow and Metabolism, 31, 693–705.

    Article  PubMed  Google Scholar 

  • Armulik, A., Genove, G., & Betsholtz, C. (2011). Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215.

    Article  CAS  PubMed  Google Scholar 

  • Armulik, A., Genove, G., Mae, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., et al. (2010). Pericytes regulate the blood-brain barrier. Nature, 468, 557–561.

    Article  CAS  PubMed  Google Scholar 

  • Arpke, R. W., Darabi, R., Mader, T. L., Zhang, Y., Toyama, A., Lonetree, C. L., Nash, N., Lowe, D. A., Perlingeiro, R. C., & Kyba, M. (2013). A new immuno-, dystrophin-deficient model, the NSG-mdx(4Cv) mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation. Stem Cells, 31, 1611–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balabanov, R., Beaumont, T., & Dore-Duffy, P. (1999). Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. Journal of Neuroscience Research, 55, 578–587.

    Article  CAS  PubMed  Google Scholar 

  • Bartoccioni, E., Gallucci, S., Scuderi, F., Ricci, E., Servidei, S., Broccolini, A., & Tonali, P. (1994). MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies. Clinical and Experimental Immunology, 95, 166–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetti, S., Hoshiya, H., & Tedesco, F. S. (2013). Repair or replace? Exploiting novel gene and cell therapy strategies for muscular dystrophies. The FEBS Journal, 280, 4263–4280.

    Article  CAS  PubMed  Google Scholar 

  • Benedetti, S., Uno, N., Hoshiya, H., Ragazzi, M., Ferrari, G., Kazuki, Y., Moyle, L. A., Tonlorenzi, R., Lombardo, A., Chaouch, S., et al. (2018). Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy. EMBO Molecular Medicine, 10, 254–275.

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson, N. E., Seto, J. T., Hall, J. K., Chamberlain, J. S., & Odom, G. L. (2016). Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Human Molecular Genetics, 25, R9–R17.

    Article  CAS  PubMed  Google Scholar 

  • Bentzinger, C. F., Wang, Y. X., & Rudnicki, M. A. (2012). Building muscle: Molecular regulation of myogenesis. Cold Spring Harbor Perspectives in Biology, 4.

    Google Scholar 

  • Berry, S. E., Liu, J., Chaney, E. J., & Kaufman, S. J. (2007). Multipotential mesoangioblast stem cell therapy in the mdx/utrn−/− mouse model for Duchenne muscular dystrophy. Regenerative Medicine, 2, 275–288.

    Article  CAS  PubMed  Google Scholar 

  • Bianco, P., & Cossu, G. (1999). Uno, nessuno e centomila: Searching for the identity of mesodermal progenitors. Experimental Cell Research, 251, 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Birbrair, A., Borges, I. D. T., Gilson Sena, I. F., Almeida, G. G., da Silva Meirelles, L., Goncalves, R., Mintz, A., & Delbono, O. (2017). How plastic are pericytes? Stem Cells and Development, 26, 1013–1019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., Wang, Z. M., Messi, M. L., Enikolopov, G. N., & Delbono, O. (2011). Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PLoS One, 6, e16816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., Zhang, T., Files, D. C., Mannava, S., Smith, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2014). Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Research & Therapy, 5, 122.

    Article  CAS  Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013a). Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells and Development, 22, 2298–2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013b). Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Research, 10, 67–84.

    Article  CAS  PubMed  Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2013c). Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. American Journal of Physiology. Cell Physiology, 305, C1098–C1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2015). Pericytes at the intersection between tissue regeneration and pathology. Clinical Science (London, England), 128, 81–93.

    Article  CAS  Google Scholar 

  • Blau, H. M., Webster, C., & Pavlath, G. K. (1983). Defective myoblasts identified in Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 80, 4856–4860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldrin, L., Muntoni, F., & Morgan, J. E. (2010). Are human and mouse satellite cells really the same? The Journal of Histochemistry and Cytochemistry, 58, 941–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldrin, L., Neal, A., Zammit, P. S., Muntoni, F., & Morgan, J. E. (2012). Donor satellite cell engraftment is significantly augmented when the host niche is preserved and endogenous satellite cells are incapacitated. Stem Cells, 30, 1971–1984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonfanti, C., Rossi, G., Tedesco, F. S., Giannotta, M., Benedetti, S., Tonlorenzi, R., Antonini, S., Marazzi, G., Dejana, E., Sassoon, D., et al. (2015). PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nature Communications, 6, 6364.

    Article  CAS  PubMed  Google Scholar 

  • Brunelli, S., Sciorati, C., D’Antona, G., Innocenzi, A., Covarello, D., Galvez, B. G., Perrotta, C., Monopoli, A., Sanvito, F., Bottinelli, R., et al. (2007). Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proceedings of the National Academy of Sciences of the United States of America, 104, 264–269.

    Article  CAS  PubMed  Google Scholar 

  • Buckingham, M. (2006). Myogenic progenitor cells and skeletal myogenesis in vertebrates. Current Opinion in Genetics & Development, 16, 525–532.

    Article  CAS  Google Scholar 

  • Campagnolo, P., Cesselli, D., Al Haj Zen, A., Beltrami, A. P., Krankel, N., Katare, R., Angelini, G., Emanueli, C., & Madeddu, P. (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121, 1735–1745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cano, E., Gebala, V., & Gerhardt, H. (2017). Pericytes or mesenchymal stem cells: Is that the question? Cell Stem Cell, 20, 296–297.

    Article  CAS  PubMed  Google Scholar 

  • Cappellari, O., Benedetti, S., Innocenzi, A., Tedesco, F. S., Moreno-Fortuny, A., Ugarte, G., Lampugnani, M. G., Messina, G., & Cossu, G. (2013). Dll4 and PDGF-BB convert committed skeletal myoblasts to pericytes without erasing their myogenic memory. Developmental Cell, 24, 586–599.

    Article  CAS  PubMed  Google Scholar 

  • Cappellari, O., & Cossu, G. (2013). Pericytes in development and pathology of skeletal muscle. Circulation Research, 113, 341–347.

    Article  CAS  PubMed  Google Scholar 

  • Carss, K. J., Stevens, E., Foley, A. R., Cirak, S., Riemersma, M., Torelli, S., Hoischen, A., Willer, T., van Scherpenzeel, M., Moore, S. A., et al. (2013). Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of alpha-dystroglycan. American Journal of Human Genetics, 93, 29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassano, M., Dellavalle, A., Tedesco, F. S., Quattrocelli, M., Crippa, S., Ronzoni, F., Salvade, A., Berardi, E., Torrente, Y., Cossu, G., et al. (2011). Alpha sarcoglycan is required for FGF-dependent myogenic progenitor cell proliferation in vitro and in vivo. Development, 138, 4523–4533.

    Article  CAS  PubMed  Google Scholar 

  • Cerletti, M., Jurga, S., Witczak, C. A., Hirshman, M. F., Shadrach, J. L., Goodyear, L. J., & Wagers, A. J. (2008). Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell, 134, 37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung, C., Bernardo, A. S., Trotter, M. W., Pedersen, R. A., & Sinha, S. (2012). Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nature Biotechnology, 30, 165–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin, C. J., Li, S., Corselli, M., Casero, D., Zhu, Y., He, C. B., Hardy, R., Peault, B., & Crooks, G. M. (2018). Transcriptionally and functionally distinct mesenchymal subpopulations are generated from human pluripotent stem cells. Stem Cell Reports, 10, 436–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christov, C., Chretien, F., Abou-Khalil, R., Bassez, G., Vallet, G., Authier, F. J., Bassaglia, Y., Shinin, V., Tajbakhsh, S., Chazaud, B., et al. (2007). Muscle satellite cells and endothelial cells: Close neighbors and privileged partners. Molecular Biology of the Cell, 18, 1397–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochrane, A., Albers, H. J., Passier, R., Mummery, C. L., van den Berg, A., Orlova, V. V., & van der Meer, A. D. (2018). Advanced in vitro models of vascular biology: Human induced pluripotent stem cells and organ-on-chip technology. Advanced Drug Delivery Reviews.

    Google Scholar 

  • Collett, G. D., & Canfield, A. E. (2005). Angiogenesis and pericytes in the initiation of ectopic calcification. Circulation Research, 96, 930–938.

    Article  CAS  PubMed  Google Scholar 

  • Collins, C. A., Olsen, I., Zammit, P. S., Heslop, L., Petrie, A., Partridge, T. A., & Morgan, J. E. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122, 289–301.

    Article  CAS  PubMed  Google Scholar 

  • Comai, G., & Tajbakhsh, S. (2014). Molecular and cellular regulation of skeletal myogenesis. Current Topics in Developmental Biology, 110, 1–73.

    Article  CAS  PubMed  Google Scholar 

  • Cordova, G., Negroni, E., Cabello-Verrugio, C., Mouly, V., & Trollet, C. (2018). Combined therapies for Duchenne muscular dystrophy to optimize treatment efficacy. Frontiers in Genetics, 9, 114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cossu, G., Previtali, S. C., Napolitano, S., Cicalese, M. P., Tedesco, F. S., Nicastro, F., Noviello, M., Roostalu, U., Natali Sora, M. G., Scarlato, M., et al. (2015). Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Molecular Medicine, 7, 1513–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisan, M., Deasy, B., Gavina, M., Zheng, B., Huard, J., Lazzari, L., & Peault, B. (2008a). Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: Myoendothelial cells and pericytes. Methods in Cell Biology, 86, 295–309.

    Article  CAS  PubMed  Google Scholar 

  • Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., et al. (2008b). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.

    Article  CAS  PubMed  Google Scholar 

  • Daneman, R., Zhou, L., Kebede, A. A., & Barres, B. A. (2010). Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature, 468, 562–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar, A., Domev, H., Ben-Yosef, O., Tzukerman, M., Zeevi-Levin, N., Novak, A., Germanguz, I., Amit, M., & Itskovitz-Eldor, J. (2012). Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation, 125, 87–99.

    Article  PubMed  Google Scholar 

  • Day, K., Shefer, G., Richardson, J. B., Enikolopov, G., & Yablonka-Reuveni, Z. (2007). Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Developmental Biology, 304, 246–259.

    Article  CAS  PubMed  Google Scholar 

  • De Angelis, L., Berghella, L., Coletta, M., Lattanzi, L., Zanchi, M., Cusella-De Angelis, M. G., Ponzetto, C., & Cossu, G. (1999). Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. The Journal of Cell Biology, 147, 869–878.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dellavalle, A., Maroli, G., Covarello, D., Azzoni, E., Innocenzi, A., Perani, L., Antonini, S., Sambasivan, R., Brunelli, S., Tajbakhsh, S., et al. (2011). Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nature Communications, 2, 499.

    Article  CAS  PubMed  Google Scholar 

  • Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., Innocenzi, A., Galvez, B. G., Messina, G., Morosetti, R., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9, 255–267.

    Article  CAS  PubMed  Google Scholar 

  • Dias Moura Prazeres, P. H., Sena, I. F. G., Borges, I. D. T., de Azevedo, P. O., Andreotti, J. P., de Paiva, A. E., de Almeida, V. M., de Paula Guerra, D. A., Pinheiro Dos Santos, G. S., Mintz, A., et al. (2017). Pericytes are heterogeneous in their origin within the same tissue. Developmental Biology, 427, 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Manera, J., Gallardo, E., de Luna, N., Navas, M., Soria, L., Garibaldi, M., Rojas-Garcia, R., Tonlorenzi, R., Cossu, G., & Illa, I. (2012). The increase of pericyte population in human neuromuscular disorders supports their role in muscle regeneration in vivo. The Journal of Pathology, 228, 544–553.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Manera, J., Touvier, T., Dellavalle, A., Tonlorenzi, R., Tedesco, F. S., Messina, G., Meregalli, M., Navarro, C., Perani, L., Bonfanti, C., et al. (2010). Partial dysferlin reconstitution by adult murine mesoangioblasts is sufficient for full functional recovery in a murine model of dysferlinopathy. Cell Death & Disease, 1, e61.

    Article  CAS  Google Scholar 

  • Dohgu, S., Takata, F., Yamauchi, A., Nakagawa, S., Egawa, T., Naito, M., Tsuruo, T., Sawada, Y., Niwa, M., & Kataoka, Y. (2005). Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Research, 1038, 208–215.

    Article  CAS  PubMed  Google Scholar 

  • Domi, T., Porrello, E., Velardo, D., Capotondo, A., Biffi, A., Tonlorenzi, R., Amadio, S., Ambrosi, A., Miyagoe-Suzuki, Y., Takeda, S., et al. (2015). Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A. Skeletal Muscle, 5, 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duffield, J. S., Lupher, M., Thannickal, V. J., & Wynn, T. A. (2013). Host responses in tissue repair and fibrosis. Annual Review of Pathology, 8, 241–276.

    Article  CAS  PubMed  Google Scholar 

  • Dulauroy, S., Di Carlo, S. E., Langa, F., Eberl, G., & Peduto, L. (2012). Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nature Medicine, 18, 1262–1270.

    Article  CAS  PubMed  Google Scholar 

  • Dumont, N. A., Bentzinger, C. F., Sincennes, M. C., & Rudnicki, M. A. (2015). Satellite cells and skeletal muscle regeneration. Comprehensive Physiology, 5, 1027–1059.

    Article  PubMed  Google Scholar 

  • Eberth, C.J. (1871). Handbuch der Lehre von der Gewegen des Menschen und der Tiere. 1.

    Google Scholar 

  • Emery, A. E. (2002). The muscular dystrophies. Lancet, 359, 687–695.

    Article  CAS  PubMed  Google Scholar 

  • Enge, M., Bjarnegard, M., Gerhardt, H., Gustafsson, E., Kalen, M., Asker, N., Hammes, H. P., Shani, M., Fassler, R., & Betsholtz, C. (2002). Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. The EMBO Journal, 21, 4307–4316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel, W. K. (1967). Muscle biopsies in neuromuscular diseases. Pediatric Clinics of North America, 14, 963–995.

    Article  CAS  PubMed  Google Scholar 

  • Ervasti, J. M., & Campbell, K. P. (1991). Membrane organization of the dystrophin-glycoprotein complex. Cell, 66, 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  • Esner, M., Meilhac, S. M., Relaix, F., Nicolas, J. F., Cossu, G., & Buckingham, M. E. (2006). Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development, 133, 737–749.

    Article  CAS  PubMed  Google Scholar 

  • Etchevers, H. C., Vincent, C., Le Douarin, N. M., & Couly, G. F. (2001). The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development, 128, 1059–1068.

    CAS  PubMed  Google Scholar 

  • Fabry, Z., Fitzsimmons, K. M., Herlein, J. A., Moninger, T. O., Dobbs, M. B., & Hart, M. N. (1993). Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. Journal of Neuroimmunology, 47, 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Fan, Y., Maley, M., Beilharz, M., & Grounds, M. (1996). Rapid death of injected myoblasts in myoblast transfer therapy. Muscle & Nerve, 19, 853–860.

    Article  CAS  Google Scholar 

  • Farrington-Rock, C., Crofts, N. J., Doherty, M. J., Ashton, B. A., Griffin-Jones, C., & Canfield, A. E. (2004). Chondrogenic and adipogenic potential of microvascular pericytes. Circulation, 110, 2226–2232.

    Article  CAS  PubMed  Google Scholar 

  • Frontera, W. R., & Ochala, J. (2015). Skeletal muscle: A brief review of structure and function. Calcified Tissue International, 96, 183–195.

    Article  CAS  PubMed  Google Scholar 

  • Galvez, B. G., Sampaolesi, M., Brunelli, S., Covarello, D., Gavina, M., Rossi, B., Constantin, G., Torrente, Y., & Cossu, G. (2006). Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. The Journal of Cell Biology, 174, 231–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gargioli, C., Coletta, M., De Grandis, F., Cannata, S. M., & Cossu, G. (2008). PlGF-MMP-9-expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nature Medicine, 14, 973–978.

    Article  CAS  PubMed  Google Scholar 

  • Gaudio, E., Pannarale, L., & Marinozzi, G. (1985). An S.E.M. corrosion cast study on pericyte localization and role in microcirculation of skeletal muscle. Angiology, 36, 458–464.

    Article  CAS  PubMed  Google Scholar 

  • Gautam, J., Nirwane, A., & Yao, Y. (2017). Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Research & Therapy, 8, 28.

    Article  CAS  Google Scholar 

  • Gavina, M., Belicchi, M., Rossi, B., Ottoboni, L., Colombo, F., Meregalli, M., Battistelli, M., Forzenigo, L., Biondetti, P., Pisati, F., et al. (2006). VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation. Blood, 108, 2857–2866.

    CAS  PubMed  Google Scholar 

  • Geissinger, H. D., Rao, P. V., & McDonald-Taylor, C. K. (1990). “mdx” mouse myopathy: Histopathological, morphometric and histochemical observations on young mice. Journal of Comparative Pathology, 102, 249–263.

    Article  CAS  PubMed  Google Scholar 

  • Gerli, M. F., Maffioletti, S. M., Millet, Q., & Tedesco, F. S. (2014). Transplantation of induced pluripotent stem cell-derived mesoangioblast-like myogenic progenitors in mouse models of muscle regeneration. Journal of Visualized Experiments, e50532.

    Google Scholar 

  • Gerli, M. F. M., Moyle, L. A., Benedetti, S., Ferrari, G., Ucuncu, E., Ragazzi, M., Constantinou, C., Lousa, I., Sakai, H., Ala, P., De Coppi, P., Tajbakhsh, S., et al. (2019). Combined notch and PDGF signalling enhances expression of stem cell markers while inducing perivascular cell features in muscle satellite cells. Stem Cell Reports, 12(3), 461–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannotta, M., Benedetti, S., Tedesco, F. S., Corada, M., Trani, M., D’Antuono, R., Millet, Q., Orsenigo, F., Galvez, B. G., Cossu, G., et al. (2014). Targeting endothelial junctional adhesion molecule-A/EPAC/Rap-1 axis as a novel strategy to increase stem cell engraftment in dystrophic muscles. EMBO Molecular Medicine, 6, 239–258.

    CAS  PubMed  Google Scholar 

  • Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E., Sacco, A., Leonardi, N. A., Kraft, P., Nguyen, N. K., Thrun, S., Lutolf, M. P., & Blau, H. M. (2010). Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science, 329, 1078–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannelli, G., Giacomazzi, G., Grosemans, H., & Sampaolesi, M. (2018). Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limb-girdle muscular dystrophy type 2E. Muscle & Nerve.

    Google Scholar 

  • Guerette, B., Skuk, D., Celestin, F., Huard, C., Tardif, F., Asselin, I., Roy, B., Goulet, M., Roy, R., Entman, M., et al. (1997). Prevention by anti-LFA-1 of acute myoblast death following transplantation. Journal of Immunology, 159, 2522–2531.

    CAS  Google Scholar 

  • Guimaraes-Camboa, N., Cattaneo, P., Sun, Y., Moore-Morris, T., Gu, Y., Dalton, N. D., Rockenstein, E., Masliah, E., Peterson, K. L., Stallcup, W. B., et al. (2017). Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell, 20, 345–359 e345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, C. N., Reynell, C., Gesslein, B., Hamilton, N. B., Mishra, A., Sutherland, B. A., O’Farrell, F. M., Buchan, A. M., Lauritzen, M., & Attwell, D. (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 508, 55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara, Y., Balci-Hayta, B., Yoshida-Moriguchi, T., Kanagawa, M., Beltran-Valero de Bernabe, D., Gundesli, H., Willer, T., Satz, J. S., Crawford, R. W., Burden, S. J., et al. (2011). A dystroglycan mutation associated with limb-girdle muscular dystrophy. The New England Journal of Medicine, 364, 939–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegyi, L., Gannon, F. H., Glaser, D. L., Shore, E. M., Kaplan, F. S., & Shanahan, C. M. (2003). Stromal cells of fibrodysplasia ossificans progressiva lesions express smooth muscle lineage markers and the osteogenic transcription factor Runx2/Cbfa-1: Clues to a vascular origin of heterotopic ossification? The Journal of Pathology, 201, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom, M., Gerhardt, H., Kalen, M., Li, X., Eriksson, U., Wolburg, H., & Betsholtz, C. (2001). Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. The Journal of Cell Biology, 153, 543–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A., & Betsholtz, C. (1999). Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126, 3047–3055.

    CAS  PubMed  Google Scholar 

  • Hirschi, K. K., & D’Amore, P. A. (1996). Pericytes in the microvasculature. Cardiovascular Research, 32, 687–698.

    Article  CAS  PubMed  Google Scholar 

  • Holm, A., Heumann, T., & Augustin, H. G. (2018). Microvascular mural cell organotypic heterogeneity and functional plasticity. Trends in Cell Biology, 28, 302–316.

    Article  PubMed  Google Scholar 

  • Huard, J., Roy, R., Bouchard, J. P., Malouin, F., Richards, C. L., & Tremblay, J. P. (1992). Human myoblast transplantation between immunohistocompatible donors and recipients produces immune reactions. Transplantation Proceedings, 24, 3049–3051.

    CAS  PubMed  Google Scholar 

  • Humphreys, B. D., Lin, S. L., Kobayashi, A., Hudson, T. E., Nowlin, B. T., Bonventre, J. V., Valerius, M. T., McMahon, A. P., & Duffield, J. S. (2010). Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. The American Journal of Pathology, 176, 85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer, P. S., Mavoungou, L. O., Ronzoni, F., Zemla, J., Schmid-Siegert, E., Antonini, S., Neff, L. A., Dorchies, O. M., Jaconi, M., Lekka, M., et al. (2018). Autologous cell therapy approach for duchenne muscular dystrophy using piggybac transposons and mesoangioblasts. Molecular Therapy, 26, 1093–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James, A. W., Zara, J. N., Zhang, X., Askarinam, A., Goyal, R., Chiang, M., Yuan, W., Chang, L., Corselli, M., Shen, J., et al. (2012). Perivascular stem cells: A prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Translational Medicine, 1, 510–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen, I., Heymsfield, S. B., Wang, Z. M., & Ross, R. (2000). Skeletal muscle mass and distribution in 468 men and women aged 18–88 year. Journal of Applied Physiology (Bethesda, MD: 1985), 89, 81–88.

    Article  CAS  Google Scholar 

  • Joe, A. W., Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., Rudnicki, M. A., & Rossi, F. M. (2010). Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biology, 12, 153–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, Y. M., Rader, E. P., Crawford, R. W., Iyengar, N. K., Thedens, D. R., Faulkner, J. A., Parikh, S. V., Weiss, R. M., Chamberlain, J. S., Moore, S. A., et al. (2008). Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature, 456, 511–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostallari, E., Baba-Amer, Y., Alonso-Martin, S., Ngoh, P., Relaix, F., Lafuste, P., & Gherardi, R. K. (2015). Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development, 142, 1242–1253.

    Article  CAS  PubMed  Google Scholar 

  • Kragstrup, T. W., Kjaer, M., & Mackey, A. L. (2011). Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scandinavian Journal of Medicine & Science in Sports, 21, 749–757.

    Article  CAS  Google Scholar 

  • Kudryashova, E., Kramerova, I., & Spencer, M. J. (2012). Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H. The Journal of Clinical Investigation, 122, 1764–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., D’Souza, S. S., Moskvin, O. V., Toh, H., Wang, B., Zhang, J., Swanson, S., Guo, L. W., Thomson, J. A., & Slukvin, I. I. (2017). Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Reports, 19, 1902–1916.

    Article  CAS  PubMed  Google Scholar 

  • Kume, T. (2012). Ligand-dependent notch signaling in vascular formation. Advances in Experimental Medicine and Biology, 727, 210–222.

    Article  CAS  PubMed  Google Scholar 

  • Lees-Shepard, J. B., Yamamoto, M., Biswas, A. A., Stoessel, S. J., Nicholas, S. E., Cogswell, C. A., Devarakonda, P. M., Schneider, M. J., Jr., Cummins, S. M., Legendre, N. P., et al. (2018). Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva. Nature Communications, 9, 471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leveen, P., Pekny, M., Gebre-Medhin, S., Swolin, B., Larsson, E., & Betsholtz, C. (1994). Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes & Development, 8, 1875–1887.

    Article  CAS  Google Scholar 

  • Levy, M. M., Joyner, C. J., Virdi, A. S., Reed, A., Triffitt, J. T., Simpson, A. H., Kenwright, J., Stein, H., & Francis, M. J. (2001). Osteoprogenitor cells of mature human skeletal muscle tissue: an in vitro study. Bone, 29, 317–322.

    Article  CAS  PubMed  Google Scholar 

  • Lin, A. Y., & Wang, L. H. (2018). Molecular therapies for muscular dystrophies. Current Treatment Options in Neurology, 20, 27.

    Article  PubMed  Google Scholar 

  • Lin, S. L., Kisseleva, T., Brenner, D. A., & Duffield, J. S. (2008). Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. The American Journal of Pathology, 173, 1617–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl, P., Johansson, B. R., Leveen, P., & Betsholtz, C. (1997). Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 277, 242–245.

    Article  CAS  PubMed  Google Scholar 

  • Loperfido, M., Steele-Stallard, H. B., Tedesco, F. S., & VandenDriessche, T. (2015). Pluripotent stem cells for gene therapy of degenerative muscle diseases. Current Gene Therapy, 15, 364–380.

    Article  CAS  PubMed  Google Scholar 

  • Lukjanenko, L., Brachat, S., Pierrel, E., Lach-Trifilieff, E., & Feige, J. N. (2013). Genomic profiling reveals that transient adipogenic activation is a hallmark of mouse models of skeletal muscle regeneration. PLoS One, 8, e71084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffioletti, S. M., Gerli, M. F., Ragazzi, M., Dastidar, S., Benedetti, S., Loperfido, M., VandenDriessche, T., Chuah, M. K., & Tedesco, F. S. (2015). Efficient derivation and inducible differentiation of expandable skeletal myogenic cells from human ES and patient-specific iPS cells. Nature Protocols, 10, 941–958.

    Article  CAS  PubMed  Google Scholar 

  • Maffioletti, S. M., Noviello, M., English, K., & Tedesco, F. S. (2014). Stem cell transplantation for muscular dystrophy: The challenge of immune response. BioMed Research International, 2014, 964010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Majesky, M. W. (2007). Developmental basis of vascular smooth muscle diversity. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1248–1258.

    Article  CAS  PubMed  Google Scholar 

  • Majesky, M. W., Dong, X. R., Regan, J. N., & Hoglund, V. J. (2011). Vascular smooth muscle progenitor cells: Building and repairing blood vessels. Circulation Research, 108, 365–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mankodi, A., Bishop, C. A., Auh, S., Newbould, R. D., Fischbeck, K. H., & Janiczek, R. L. (2016). Quantifying disease activity in fatty-infiltrated skeletal muscle by IDEAL-CPMG in Duchenne muscular dystrophy. Neuromuscular Disorders, 26, 650–658.

    Article  PubMed  Google Scholar 

  • Mann, C. J., Perdiguero, E., Kharraz, Y., Aguilar, S., Pessina, P., Serrano, A. L., & Munoz-Canoves, P. (2011). Aberrant repair and fibrosis development in skeletal muscle. Skeletal Muscle, 1, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzur, A. Y., & Muntoni, F. (2009). Diagnosis and new treatments in muscular dystrophies. Postgraduate Medical Journal, 85, 622–630.

    CAS  PubMed  Google Scholar 

  • Matsumura, K., & Campbell, K. P. (1994). Dystrophin-glycoprotein complex: Its role in the molecular pathogenesis of muscular dystrophies. Muscle & Nerve, 17, 2–15.

    Article  CAS  Google Scholar 

  • Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology, 9, 493–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, J., Adkin, C. F., Xu, S. W., Muntoni, F., & Morgan, J. E. (2011). Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice. PLoS One, 6, e17454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercuri, E., & Muntoni, F. (2013). Muscular dystrophies. Lancet, 381, 845–860.

    Article  CAS  PubMed  Google Scholar 

  • Michalak, M., & Opas, M. (1997). Functions of dystrophin and dystrophin associated proteins. Current Opinion in Neurology, 10, 436–442.

    Article  CAS  PubMed  Google Scholar 

  • Minasi, M. G., Riminucci, M., De Angelis, L., Borello, U., Berarducci, B., Innocenzi, A., Caprioli, A., Sirabella, D., Baiocchi, M., De Maria, R., et al. (2002). The meso-angioblast: A multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development, 129, 2773–2783.

    CAS  PubMed  Google Scholar 

  • Mitsuhashi, S., & Kang, P. B. (2012). Update on the genetics of limb girdle muscular dystrophy. Seminars in Pediatric Neurology, 19, 211–218.

    Article  PubMed  Google Scholar 

  • Montarras, D., Morgan, J., Collins, C., Relaix, F., Zaffran, S., Cumano, A., Partridge, T., & Buckingham, M. (2005). Direct isolation of satellite cells for skeletal muscle regeneration. Science, 309, 2064–2067.

    Article  CAS  PubMed  Google Scholar 

  • Morales, M. G., Gutierrez, J., Cabello-Verrugio, C., Cabrera, D., Lipson, K. E., Goldschmeding, R., & Brandan, E. (2013). Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Human Molecular Genetics, 22, 4938–4951.

    Article  CAS  PubMed  Google Scholar 

  • Morosetti, R., Gidaro, T., Broccolini, A., Gliubizzi, C., Sancricca, C., Tonali, P. A., Ricci, E., & Mirabella, M. (2011). Mesoangioblasts from facioscapulohumeral muscular dystrophy display in vivo a variable myogenic ability predictable by their in vitro behavior. Cell Transplantation, 20, 1299–1313.

    Article  PubMed  Google Scholar 

  • Murray, I. R., Baily, J. E., Chen, W. C. W., Dar, A., Gonzalez, Z. N., Jensen, A. R., Petrigliano, F. A., Deb, A., & Henderson, N. C. (2017). Skeletal and cardiac muscle pericytes: Functions and therapeutic potential. Pharmacology & Therapeutics, 171, 65–74.

    Article  CAS  Google Scholar 

  • Nakagawa, S., Deli, M. A., Nakao, S., Honda, M., Hayashi, K., Nakaoke, R., Kataoka, Y., & Niwa, M. (2007). Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cellular and Molecular Neurobiology, 27, 687–694.

    Article  CAS  PubMed  Google Scholar 

  • Negroni, E., Bigot, A., Butler-Browne, G. S., Trollet, C., & Mouly, V. (2016). Cellular therapies for muscular dystrophies: Frustrations and clinical successes. Human Gene Therapy, 27, 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, F., Cherel, Y., Guigand, L., Goubault-Leroux, I., & Wyers, M. (2002). Muscle lesions associated with dystrophin deficiency in neonatal golden retriever puppies. Journal of Comparative Pathology, 126, 100–108.

    Article  CAS  PubMed  Google Scholar 

  • Norrmen, C., Tammela, T., Petrova, T. V., & Alitalo, K. (2011). Biological basis of therapeutic lymphangiogenesis. Circulation, 123, 1335–1351.

    Article  PubMed  Google Scholar 

  • Noviello, M., Tedesco, F. S., Bondanza, A., Tonlorenzi, R., Rosaria Carbone, M., Gerli, M. F. M., Marktel, S., Napolitano, S., Cicalese, M. P., Ciceri, F., et al. (2014). Inflammation converts human mesoangioblasts into targets of alloreactive immune responses: Implications for allogeneic cell therapy of DMD. Molecular Therapy, 22, 1342–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlova, V. V., van den Hil, F. E., Petrus-Reurer, S., Drabsch, Y., Ten Dijke, P., & Mummery, C. L. (2014). Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nature Protocols, 9, 1514–1531.

    Article  CAS  PubMed  Google Scholar 

  • Pallone, T. L., & Silldorff, E. P. (2001). Pericyte regulation of renal medullary blood flow. Experimental Nephrology, 9, 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Pallone, T. L., Silldorff, E. P., & Turner, M. R. (1998). Intrarenal blood flow: Microvascular anatomy and the regulation of medullary perfusion. Clinical and Experimental Pharmacology & Physiology, 25, 383–392.

    Article  CAS  Google Scholar 

  • Palmieri, B., Tremblay, J. P., & Daniele, L. (2010). Past, present and future of myoblast transplantation in the treatment of Duchenne muscular dystrophy. Pediatric Transplantation, 14, 813–819.

    Article  PubMed  Google Scholar 

  • Palumbo, R., Sampaolesi, M., De Marchis, F., Tonlorenzi, R., Colombetti, S., Mondino, A., Cossu, G., & Bianchi, M. E. (2004). Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. The Journal of Cell Biology, 164, 441–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge, T. (2000). The current status of myoblast transfer. Neurological Sciences, 21, S939–S942.

    Article  CAS  PubMed  Google Scholar 

  • Partridge, T. A., Morgan, J. E., Coulton, G. R., Hoffman, E. P., & Kunkel, L. M. (1989). Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature, 337, 176–179.

    Article  CAS  PubMed  Google Scholar 

  • Peppiatt, C. M., Howarth, C., Mobbs, P., & Attwell, D. (2006). Bidirectional control of CNS capillary diameter by pericytes. Nature, 443, 700–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessina, P., Conti, V., Tonlorenzi, R., Touvier, T., Meneveri, R., Cossu, G., & Brunelli, S. (2012). Necdin enhances muscle reconstitution of dystrophic muscle by vessel-associated progenitors, by promoting cell survival and myogenic differentiation. Cell Death and Differentiation, 19, 827–838.

    Article  CAS  PubMed  Google Scholar 

  • Pini, V., Morgan, J. E., Muntoni, F., & O’Neill, H. C. (2017). Genome editing and muscle stem cells as a therapeutic tool for muscular dystrophies. Current Stem Cell Reports, 3, 137–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prazeres, P., Almeida, V. M., Lousado, L., Andreotti, J. P., Paiva, A. E., Santos, G. S. P., Azevedo, P. O., Souto, L., Almeida, G. G., Filev, R., et al. (2018). Macrophages generate pericytes in the developing brain. Cellular and Molecular Neurobiology, 38, 777–782.

    Article  CAS  PubMed  Google Scholar 

  • Quan, T. E., Cowper, S. E., & Bucala, R. (2006). The role of circulating fibrocytes in fibrosis. Current Rheumatology Reports, 8, 145–150.

    Article  CAS  PubMed  Google Scholar 

  • Quattrocelli, M., Costamagna, D., Giacomazzi, G., Camps, J., & Sampaolesi, M. (2014). Notch signaling regulates myogenic regenerative capacity of murine and human mesoangioblasts. Cell Death & Disease, 5, e1448.

    Article  CAS  Google Scholar 

  • Relaix, F., & Zammit, P. S. (2012). Satellite cells are essential for skeletal muscle regeneration: The cell on the edge returns centre stage. Development, 139, 2845–2856.

    Article  CAS  PubMed  Google Scholar 

  • Rocheteau, P., Gayraud-Morel, B., Siegl-Cachedenier, I., Blasco, M. A., & Tajbakhsh, S. (2012). A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell, 148, 112–125.

    Article  CAS  PubMed  Google Scholar 

  • Rodeheffer, M. S. (2010). Tipping the scale: Muscle versus fat. Nature Cell Biology, 12, 102–104.

    Article  CAS  PubMed  Google Scholar 

  • Rouget, C. (1873). Mémoire sur le développement, la structure et les proprietés physiologiques des capillaires sanguins et lymphatiques. Archives Physical, 5, 603–610.

    Google Scholar 

  • Ryall, J. G., Schertzer, J. D., & Lynch, G. S. (2008). Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology, 9, 213–228.

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., et al. (2016). No identical “mesenchymal stem cells” at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports, 6, 897–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S., & Blau, H. M. (2008). Self-renewal and expansion of single transplanted muscle stem cells. Nature, 456, 502–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacco, A., Mourkioti, F., Tran, R., Choi, J., Llewellyn, M., Kraft, P., Shkreli, M., Delp, S., Pomerantz, J. H., Artandi, S. E., et al. (2010). Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell, 143, 1059–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaolesi, M., Blot, S., D’Antona, G., Granger, N., Tonlorenzi, R., Innocenzi, A., Mognol, P., Thibaud, J. L., Galvez, B. G., Barthelemy, I., et al. (2006). Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 444, 574–579.

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi, M., Torrente, Y., Innocenzi, A., Tonlorenzi, R., D’Antona, G., Pellegrino, M. A., Barresi, R., Bresolin, N., De Angelis, M. G., Campbell, K. P., et al. (2003). Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science, 301, 487–492.

    Article  CAS  PubMed  Google Scholar 

  • Sciorati, C., Galvez, B. G., Brunelli, S., Tagliafico, E., Ferrari, S., Cossu, G., & Clementi, E. (2006). Ex vivo treatment with nitric oxide increases mesoangioblast therapeutic efficacy in muscular dystrophy. Journal of Cell Science, 119, 5114–5123.

    Article  CAS  PubMed  Google Scholar 

  • Scoto, M., Finkel, R., Mercuri, E., & Muntoni, F. (2018). Genetic therapies for inherited neuromuscular disorders. Lancet Child Adolescent Health, 2, 600–609.

    Article  PubMed  Google Scholar 

  • Sims, D. E. (1986). The pericyte—a review. Tissue & Cell, 18, 153–174.

    Article  CAS  Google Scholar 

  • Skuk, D., Goulet, M., Roy, B., Chapdelaine, P., Bouchard, J. P., Roy, R., Dugre, F. J., Sylvain, M., Lachance, J. G., Deschenes, L., et al. (2006). Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. Journal of Neuropathology and Experimental Neurology, 65, 371–386.

    Article  CAS  PubMed  Google Scholar 

  • Skuk, D., Goulet, M., Roy, B., Piette, V., Cote, C. H., Chapdelaine, P., Hogrel, J. Y., Paradis, M., Bouchard, J. P., Sylvain, M., et al. (2007). First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: Eighteen months follow-up. Neuromuscular Disorders, 17, 38–46.

    Article  PubMed  Google Scholar 

  • Skuk, D., Roy, B., Goulet, M., Chapdelaine, P., Bouchard, J. P., Roy, R., Dugre, F. J., Lachance, J. G., Deschenes, L., Helene, S., et al. (2004). Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Molecular Therapy, 9, 475–482.

    Article  CAS  PubMed  Google Scholar 

  • Skuk, D., & Tremblay, J. P. (2011). Intramuscular cell transplantation as a potential treatment of myopathies: Clinical and preclinical relevant data. Expert Opinion on Biological Therapy, 11, 359–374.

    Article  PubMed  Google Scholar 

  • Smythe, G. M., Fan, Y., & Grounds, M. D. (2000). Enhanced migration and fusion of donor myoblasts in dystrophic and normal host muscle. Muscle & Nerve, 23, 560–574.

    Article  CAS  Google Scholar 

  • Soriano, P. (1994). Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes & Development, 8, 1888–1896.

    Article  CAS  Google Scholar 

  • Straub, V., Bittner, R. E., Leger, J. J., & Voit, T. (1992). Direct visualization of the dystrophin network on skeletal muscle fiber membrane. The Journal of Cell Biology, 119, 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  • Straub, V., & Campbell, K. P. (1997). Muscular dystrophies and the dystrophin-glycoprotein complex. Current Opinion in Neurology, 10, 168–175.

    Article  CAS  PubMed  Google Scholar 

  • Tagliafico, E., Brunelli, S., Bergamaschi, A., De Angelis, L., Scardigli, R., Galli, D., Battini, R., Bianco, P., Ferrari, S., Cossu, G., et al. (2004). TGFbeta/BMP activate the smooth muscle/bone differentiation programs in mesoangioblasts. Journal of Cell Science, 117, 4377–4388.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K. K., Hall, J. K., Troy, A. A., Cornelison, D. D., Majka, S. M., & Olwin, B. B. (2009). Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell, 4, 217–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedesco, F. S., Dellavalle, A., Diaz-Manera, J., Messina, G., & Cossu, G. (2010). Repairing skeletal muscle: Regenerative potential of skeletal muscle stem cells. The Journal of Clinical Investigation, 120, 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedesco, F. S., Gerli, M. F., Perani, L., Benedetti, S., Ungaro, F., Cassano, M., Antonini, S., Tagliafico, E., Artusi, V., Longa, E., et al. (2012). Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Science Translational Medicine, 4, 140ra189.

    Article  CAS  Google Scholar 

  • Tedesco, F. S., Hoshiya, H., D’Antona, G., Gerli, M. F., Messina, G., Antonini, S., Tonlorenzi, R., Benedetti, S., Berghella, L., Torrente, Y., et al. (2011). Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Science Translational Medicine, 3, 96ra78.

    Article  CAS  PubMed  Google Scholar 

  • Tedesco, F. S., Moyle, L. A., & Perdiguero, E. (2017). Muscle interstitial cells: A brief field guide to non-satellite cell populations in skeletal muscle. Methods in Molecular Biology, 1556, 129–147.

    Article  PubMed  CAS  Google Scholar 

  • Tews, D. S., & Goebel, H. H. (1995). Expression of cell adhesion molecules in inflammatory myopathies. Journal of Neuroimmunology, 59, 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, G. D. (2013). Functional muscle ischemia in Duchenne and Becker muscular dystrophy. Frontiers in Physiology, 4, 381.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson, L. V. (2009). Age-related muscle dysfunction. Experimental Gerontology, 44, 106–111.

    Article  CAS  PubMed  Google Scholar 

  • Tu, Z., Li, Y., Smith, D. S., Sheibani, N., Huang, S., Kern, T., & Lin, F. (2011). Retinal pericytes inhibit activated T cell proliferation. Investigative Ophthalmology & Visual Science, 52, 9005–9010.

    Article  Google Scholar 

  • Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S., & Tsuchida, K. (2010). Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nature Cell Biology, 12, 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Ugarte, G., Cappellari, O., Perani, L., Pistocchi, A., & Cossu, G. (2012). Noggin recruits mesoderm progenitors from the dorsal aorta to a skeletal myogenic fate. Developmental Biology, 365, 91–100.

    Article  CAS  PubMed  Google Scholar 

  • Valadares, M. C., Gomes, J. P., Castello, G., Assoni, A., Pellati, M., Bueno, C., Corselli, M., Silva, H., Bartolini, P., Vainzof, M., et al. (2014). Human adipose tissue derived pericytes increase life span in Utrn (tm1Ked) Dmd (mdx)/J mice. Stem Cell Reviews, 10, 830–840.

    Article  CAS  Google Scholar 

  • Valero, M. C., Huntsman, H. D., Liu, J., Zou, K., & Boppart, M. D. (2012). Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle. PLoS One, 7, e29760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbeek, M. M., Westphal, J. R., Ruiter, D. J., & de Waal, R. M. (1995). T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions. Journal of Immunology, 154, 5876–5884.

    Google Scholar 

  • Verdijk, L. B., Snijders, T., Drost, M., Delhaas, T., Kadi, F., & van Loon, L. J. (2014). Satellite cells in human skeletal muscle; from birth to old age. Age (Dordrecht, Netherlands), 36, 545–547.

    Article  CAS  Google Scholar 

  • Walston, J. D. (2012). Sarcopenia in older adults. Current Opinion in Rheumatology, 24, 623–627.

    Article  PubMed  PubMed Central  Google Scholar 

  • Willis, B. C., duBois, R. M., & Borok, Z. (2006). Epithelial origin of myofibroblasts during fibrosis in the lung. Proceedings of the American Thoracic Society, 3, 377–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worton, R. (1995). Muscular dystrophies: Diseases of the dystrophin-glycoprotein complex. Science, 270, 755–756.

    Article  CAS  PubMed  Google Scholar 

  • Wren, T. A., Bluml, S., Tseng-Ong, L., & Gilsanz, V. (2008). Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: Preliminary study. AJR. American Journal of Roentgenology, 190, W8–W12.

    Article  PubMed  Google Scholar 

  • Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology, 214, 199–210.

    Article  CAS  PubMed  Google Scholar 

  • Yablonka-Reuveni, Z. (2011). The skeletal muscle satellite cell: Still young and fascinating at 50. The Journal of Histochemistry and Cytochemistry, 59, 1041–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki, T., Nalbandian, A., Uchida, Y., Li, W., Arnold, T. D., Kubota, Y., Yamamoto, S., Ema, M., & Mukouyama, Y. S. (2017). Tissue myeloid progenitors differentiate into pericytes through TGF-beta signaling in developing skin vasculature. Cell Reports, 18, 2991–3004.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Y., Norris, E. H., Mason, C. E., & Strickland, S. (2016). Laminin regulates PDGFRbeta(+) cell stemness and muscle development. Nature Communications, 7, 11415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, H., Price, F., & Rudnicki, M. A. (2013). Satellite cells and the muscle stem cell niche. Physiological Reviews, 93, 23–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zammit, P. S., Golding, J. P., Nagata, Y., Hudon, V., Partridge, T. A., & Beauchamp, J. R. (2004). Muscle satellite cells adopt divergent fates: A mechanism for self-renewal? The Journal of Cell Biology, 166, 347–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zammit, P. S., Partridge, T. A., & Yablonka-Reuveni, Z. (2006). The skeletal muscle satellite cell: The stem cell that came in from the cold. The Journal of Histochemistry and Cytochemistry, 54, 1177–1191.

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., Chandraker, A., Yuan, X., Pu, W. T., Roberts, A. B., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13, 952–961.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Peault, B., Chen, W., Li, W., Corselli, M., James, A. W., Lee, M., Siu, R. K., Shen, P., Zheng, Z., et al. (2011). The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Engineering. Part A, 17, 2497–2509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, K. W. (1923). Der feinere Bau der Blutkapillaren. Zeitschrift für Anatomie und Entwicklungsgeschichte, 68, 29–109.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Giulio Cossu for the critical reading of this manuscript. This research was supported by the National Institute for Health Research (NIHR) Great Ormond Street Hospital Biomedical Research Centre. F.S.T. is also funded by NIHR (Clinical Lectureship in Paediatrics). The views expressed are those of the authors and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health. Work in the Benedetti laboratory is supported by Great Ormond Street Children’s Charity, Sparks and Krabbe UK. Work in the Tedesco laboratory is funded by the European Research Council (7591108—HISTOID), Muscular Dystrophy UK, the UK MRC and BBSRC and the AFM-Telethon. F.S.T. is also grateful to previous funding from the European Union’s 7th Framework Programme for research, technological development and demonstration under grant agreement no. 602423 (PluriMes), Fundació La Marató de TV3, IMI joint undertaking n° 115582 EBiSC (EU FP7 and EFPIA companies), Duchenne Parent Project Onlus, Takeda New Frontier Science and the NIHR (Academic Clinical Fellowship in Paediatrics). L.A.M. is supported by the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesco Saverio Tedesco or Sara Benedetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moyle, L.A., Tedesco, F.S., Benedetti, S. (2019). Pericytes in Muscular Dystrophies. In: Birbrair, A. (eds) Pericyte Biology in Disease. Advances in Experimental Medicine and Biology, vol 1147. Springer, Cham. https://doi.org/10.1007/978-3-030-16908-4_15

Download citation

Publish with us

Policies and ethics