Skip to main content

Pericytes in Cutaneous Wound Healing

  • Chapter
  • First Online:
Pericyte Biology in Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1147))

Abstract

Most of the studies on cutaneous wound healing are focused on epidermal closure. This is obviously important, as the epidermis constitutes the main barrier that separates the inner organism from the environment. However, dermal remodeling is key to achieve long-lasting healing of the area that was originally wounded. In this chapter, we summarize what is known on the stromal components that strongly influence the outcome of healing and postulate that dedifferentiation of stably differentiated cells plays a major role in the initial response to wounding, as well as in long-term wound remodeling. Specifically, we explore the available evidence implicating skin pericytes, endothelial cells, Schwann cells, and macrophages as major players in a complex symphony of cellular plasticity and signaling events whose balance will promote healing (by tissue regeneration or repair) or fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37, 13–2510.

    Google Scholar 

  • Adams, R. H., & Alitalo, K. (2007). Molecular regulation of angiogenesis and lymphangiogenesis. Nature Reviews Molecular Cell Biology, 8, 464–478.

    Article  CAS  PubMed  Google Scholar 

  • Aki, R., Amoh, Y., Li, L., Katsuoka, K., & Hoffman, R. M. (2010). Nestin-expressing interfollicular blood vessel network contributes to skin transplant survival and wound healing. Journal of Cellular Biochemistry, 110, 80–86.

    CAS  PubMed  Google Scholar 

  • Albert, P., & Boilly, B. (1988). Effect of transferrin on amphibian limb regeneration: A blastema cell culture study. Roux’s Archives of Developmental Biology, 197, 193–196.

    Article  CAS  PubMed  Google Scholar 

  • van Amerongen, M. J., Harmsen, M. C., van Rooijen, N., Petersen, A. H., & van Luyn, M. J. A. (2007). Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. The American Journal of Pathology, 170, 818–829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amoh, Y., et al. (2005). Hair follicle-derived blood vessels vascularize tumors in skin and are inhibited by doxorubicin. Cancer Research, 65, 2337–2343.

    Article  CAS  PubMed  Google Scholar 

  • Amselgruber, W. M., Schafer, M., & Sinowatz, F. (1999). Angiogenesis in the bovine corpus luteum: An immunocytochemical and ultrastructural study. Anatomia, Histologia, Embryologia, 28, 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Anand, P. (1996). Neurotrophins and peripheral neuropathy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351, 449–454.

    Article  CAS  PubMed  Google Scholar 

  • Anand, P., et al. (1987). Increase of substance P-like immunoreactivity in the peripheral nerve of the axolotl after injury. Neuroscience Letters, 82, 241–245.

    Article  CAS  PubMed  Google Scholar 

  • Armulik, A., Genové, G., & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, L., et al. (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into anti-inflammatory macrophages to support myogenesis. The Journal of Experimental Medicine, 204, 1057–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arthur, R. P., & Shelley, W. B. (1959). The innervation of human epidermis. The Journal of Investigative Dermatology, 32, 397–411.

    Article  CAS  PubMed  Google Scholar 

  • Asahara, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.

    Article  CAS  PubMed  Google Scholar 

  • Asahara, T., et al. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation Research, 85, 221–228.

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi, M., Baguneid, M., & Bayat, A. (2016). The role of neuromediators and innervation in cutaneous wound healing. Acta Dermato-Venereologica, 96, 587–594.

    Article  CAS  PubMed  Google Scholar 

  • Ashton, N., & de Oliveira, F. (1966). Nomenclature of pericytes. Intramural and extramural. The British Journal of Ophthalmology, 50, 119–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurora, A. B., & Olson, E. N. (2014). Immune modulation of stem cells and regeneration. Cell Stem Cell, 15, 14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausprunk, D. H., & Folkman, J. (1977). Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvascular Research, 14, 53–65.

    Article  CAS  PubMed  Google Scholar 

  • Bagley, R. G., Weber, W., Rouleau, C., & Teicher, B. A. (2005). Pericytes and endothelial precursor cells: Cellular interactions and contributions to malignancy. Cancer Research, 65, 9741–9750.

    Article  CAS  PubMed  Google Scholar 

  • Bai, L., et al. (2015). Genetic identification of an expansive mechanoreceptor sensitive to skin stroking. Cell, 163, 1783–1795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain, C. C., et al. (2014). Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 15, 929–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaji, S., King, A., Crombleholme, T. M., & Keswani, S. G. (2013). The role of endothelial progenitor cells in postnatal vasculogenesis: Implications for therapeutic neovascularization and wound healing. Advances in Wound Care, 2, 283–295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baluk, P., Morikawa, S., Haskell, A., Mancuso, M., & McDonald, D. M. (2003). Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. The American Journal of Pathology, 163, 1801–1815.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron, M., & Gallego, A. (1972). The relation of the microglia with the pericytes in the cat cerebral cortex. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 128, 42–57.

    Article  CAS  PubMed  Google Scholar 

  • Barreiro, O., et al. (2016). Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. eLife, 5, e15251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrette, B., et al. (2008). Requirement of myeloid cells for axon regeneration. Journal of Neuroscience, 28, 9363–9376.

    Article  CAS  PubMed  Google Scholar 

  • Bastien, D., & Lacroix, S. (2014). Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve injury. Experimental Neurology, 258, 62–77.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, S. M., Bauer, R. J., & Velazquez, O. C. (2005). Angiogenesis, vasculogenesis, and induction of healing in chronic wounds. Vascular and Endovascular Surgery, 39, 293–306.

    Article  PubMed  Google Scholar 

  • Bauer, S., Kerr, B. J., & Patterson, P. H. (2007). The neuropoietic cytokine family in development, plasticity, disease and injury. Nature Reviews Neuroscience, 8, 221–232.

    Article  CAS  PubMed  Google Scholar 

  • Baum, C. L., & Arpey, C. J. (2005). Normal cutaneous wound healing: Clinical correlation with cellular and molecular events. Dermatologic Surgery, 31, 674–686;. discussion 686.

    Article  CAS  PubMed  Google Scholar 

  • Be’eri, H., Reichert, F., Saada, A., & Rotshenker, S. (1998). The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. European Journal of Neuroscience, 10, 2707–2713.

    Article  PubMed  Google Scholar 

  • Bergmann, C. E., et al. (2006). Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice. Journal of Leukocyte Biology, 80, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Berse, B., Brown, L. F., Van de Water, L., Dvorak, H. F., & Senger, D. R. (1992). Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Molecular Biology of the Cell, 3, 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., et al. (2017). How plastic are pericytes? Stem Cells and Development, 26, 1013–1019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas, S. K., & Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nature Immunology, 11, 889–896.

    Article  CAS  PubMed  Google Scholar 

  • Blakney, A. K., Swartzlander, M. D., & Bryant, S. J. (2012). The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. Journal of Biomedical Materials Research. Part A, 100, 1375–1386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blakytny, R., & Jude, E. (2006). The molecular biology of chronic wounds and delayed healing in diabetes. Diabetic Medicine, 23, 594–608.

    Article  CAS  PubMed  Google Scholar 

  • Blancas, A. A., Wong, L. E., Glaser, D. E., & McCloskey, K. E. (2013). Specialized tip/stalk-like and phalanx-like endothelial cells from embryonic stem cells. Stem Cells and Development, 22, 1398–1407.

    Article  CAS  PubMed  Google Scholar 

  • Bodnar, R. J., Satish, L., Yates, C. C., & Wells, A. (2016). Pericytes: A newly recognized player in wound healing. Wound Repair and Regeneration, 24, 204–214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brain, S. D., & Grant, A. D. (2004). Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiological Reviews, 84, 903–934.

    Article  CAS  PubMed  Google Scholar 

  • Brancato, S. K., & Albina, J. E. (2011). Wound macrophages as key regulators of repair: Origin, phenotype, and function. The American Journal of Pathology, 178, 19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braverman, I. M. (2000). The cutaneous microcirculation. The Journal of Investigative Dermatology Symposium Proceedings, 5, 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Brockes, J. P., & Kumar, A. (2008). Comparative aspects of animal regeneration. Annual Review of Cell and Developmental Biology, 24, 525–549.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, M. D., Sengupta, R., Snyder, S. C., & Rubin, J. B. (2013). Hitting them where they live: Targeting the glioblastoma perivascular stem cell niche. Current Pathobiology Reports, 1, 101–110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brubaker, A. L., Palmer, J. L., & Kovacs, E. J. (2011). Age-related dysregulation of inflammation and innate immunity: Lessons learned from rodent models. Aging and Disease, 2, 346–360.

    PubMed  PubMed Central  Google Scholar 

  • Buckley, G., Metcalfe, A. D., & Ferguson, M. W. (2011). Peripheral nerve regeneration in the MRL/MpJ ear wound model. Journal of Anatomy, 218, 163–172.

    Article  PubMed  Google Scholar 

  • Buckley, G., Wong, J., Metcalfe, A. D., & Ferguson, M. W. (2012). Denervation affects regenerative responses in MRL/MpJ and repair in C57BL/6 ear wounds. Journal of Anatomy, 220, 3–12.

    Article  CAS  PubMed  Google Scholar 

  • Bullard, K. M., Longaker, M. T., & Lorenz, H. P. (2003). Fetal wound healing: Current biology. World Journal of Surgery, 27, 54–61.

    Article  PubMed  Google Scholar 

  • Burri, P. H., & Djonov, V. (2002). Intussusceptive angiogenesis—the alternative to capillary sprouting. Molecular Aspects of Medicine, 23, S1–S27.

    Article  PubMed  Google Scholar 

  • Cafferty, W. B., et al. (2001). Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. Journal of Neuroscience, 21, 7161–7170.

    Article  CAS  PubMed  Google Scholar 

  • Calderon, B., et al. (2015). The pancreas anatomy conditions the origin and properties of resident macrophages. The Journal of Experimental Medicine, 212, 1497–1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, M., & Humphries, P. (2011). Size-selective and in vitro assessment of inner blood retina barrier permeability. Methods in Molecular Biology, 763, 355–367.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, M. E., & Conboy, I. M. (2007). Loss of stem cell regenerative capacity within aged niches. Aging Cell, 6, 371–382.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet, P., & Tessier-Lavigne, M. (2005). Common mechanisms of nerve and blood vessel wiring. Nature, 436, 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Cattin, A.-L., et al. (2015). Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell, 162, 1127–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavallo, T., Sade, R., Folkman, J., & Cotran, R. S. (1973). Ultrastructural autoradiographic studies of the early vasoproliferative response in tumor angiogenesis. The American Journal of Pathology, 70, 345–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caviedes-Bucheli, J., et al. (2008). Calcitonin gene-related peptide receptor expression in alternatively activated monocytes/macrophages during irreversible pulpitis. Journal of Endodontics, 34, 945–949.

    Article  PubMed  Google Scholar 

  • Chan-Ling, T., et al. (2004). Desmin ensheathment ratio as an indicator of vessel stability: Evidence in normal development and in retinopathy of prematurity. The American Journal of Pathology, 165, 1301–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, G., et al. (2011). Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood, 118, 4740–4749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, L., et al. (2013). Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell, 153, 139–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheverud, J. M., et al. (2012). Healing quantitative trait loci in a combined cross analysis using related mouse strain crosses. Heredity, 108, 441–446.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, H. Y., Chen, C. T., Chien, H. F., & Hsieh, S. T. (2005). Skin denervation, neuropathology, and neuropathic pain in a laser-induced focal neuropathy. Neurobiology of Disease, 18, 40–53.

    Article  PubMed  Google Scholar 

  • Chong, D. C., Yu, Z., Brighton, H. E., Bear, J. E., & Bautch, V. L. (2017). Tortuous microvessels contribute to wound healing via sprouting angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1903–1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choo, A. F., Logan, D. M., & Rathbone, M. P. (1978). Nerve trophic effects: An in vitro assay for factors involved in regulation of protein synthesis in regenerating amphibian limbs. The Journal of Experimental Zoology, 206, 347–354.

    Article  CAS  PubMed  Google Scholar 

  • Clark, L. D., Clark, R. K., & Heber-Katz, E. (1998). A new murine model for mammalian wound repair and regeneration. Clinical Immunology and Immunopathology, 88, 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Cliff, W. (1963). Observations on healing tissues: A combined light and electron microscopic investigation. Philosophical Transactions of the Royal Society, 246, 305–325.

    Google Scholar 

  • Conway, E. M., Collen, D., & Carmeliet, P. (2001). Molecular mechanisms of blood vessel growth. Cardiovascular Research, 49, 507–521.

    Article  CAS  PubMed  Google Scholar 

  • Corselli, M., Chen, C. W., Crisan, M., Lazzari, L., & Peault, B. (2010). Perivascular ancestors of adult multipotent stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1104–1109.

    Article  CAS  PubMed  Google Scholar 

  • Crisan, M., Corselli, M., Chen, W. C. W., Peault, B., & Moldovan, N. I. (2012). Perivascular cells for regenerative medicine. Journal of Cellular and Molecular Medicine, 16, 2851–2860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crocker, D. J., Murad, T. M., & Geer, J. C. (1970). Role of the pericyte in wound healing. An ultrastructural study. Experimental and Molecular Pathology, 13, 51–65.

    Article  CAS  PubMed  Google Scholar 

  • Currie, J. D., et al. (2016). Live imaging of axolotl digit regeneration reveals spatiotemporal choreography of diverse connective tissue progenitor pools. Developmental Cell, 39, 411–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daley, J. M., et al. (2005). Modulation of macrophage phenotype by soluble product(s) released from neutrophils. Journal of Immunology, 174, 2265–2272.

    Article  CAS  Google Scholar 

  • Daley, J. M., Brancato, S. K., Thomay, A. A., Reichner, J. S., & Albina, J. E. (2010). The phenotype of murine wound macrophages. Journal of Leukocyte Biology, 87, 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Dallos, A., et al. (2006). Effects of the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide and galanin on the production of nerve growth factor and inflammatory cytokines in cultured human keratinocytes. Neuropeptides, 40, 251–263.

    Article  CAS  PubMed  Google Scholar 

  • Darland, D. C., & D’Amore, P. A. (2001). TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis, 4, 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Darland, D. C., et al. (2003). Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Developmental Biology, 264, 275–288.

    Article  CAS  PubMed  Google Scholar 

  • Davies, A. M. (2000). Neurotrophins: Neurotrophic modulation of neurite growth. Current Biology, 10, R198–R200.

    Article  CAS  PubMed  Google Scholar 

  • De Smet, F., Segura, I., De Bock, K., Hohensinner, P. J., & Carmeliet, P. (2009). Mechanisms of vessel branching: Filopodia on endothelial tip cells lead the way. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 639–649.

    Article  PubMed  CAS  Google Scholar 

  • De Spiegelaere, W., et al. (2012). Intussusceptive angiogenesis: A biologically relevant form of angiogenesis. Journal of Vascular Research, 49, 390–404.

    Article  PubMed  Google Scholar 

  • Delgado, A. V., McManus, A. T., & Chambers, J. P. (2005). Exogenous administration of Substance P enhances wound healing in a novel skin-injury model. Experimental Biology and Medicine, 230, 271–280.

    Article  CAS  PubMed  Google Scholar 

  • Desmouliere, A. (1995). Factors influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biology International, 19, 471–476.

    Article  CAS  PubMed  Google Scholar 

  • Dias Moura Prazeres, P. H., et al. (2017). Pericytes are heterogeneous in their origin within the same tissue. Developmental Biology, 427, 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Flores, L., et al. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 24, 909–969.

    CAS  PubMed  Google Scholar 

  • DiPietro, L. A. (2013). Angiogenesis and scar formation in healing wounds. Current Opinion in Rheumatology, 25, 87–91.

    Article  PubMed  Google Scholar 

  • Djonov, V., Baum, O., & Burri, P. H. (2003). Vascular remodeling by intussusceptive angiogenesis. Cell and Tissue Research, 314, 107–117.

    Article  PubMed  Google Scholar 

  • Djouhri, L. (2016). Adelta-fiber low threshold mechanoreceptors innervating mammalian hairy skin: A review of their receptive, electrophysiological and cytochemical properties in relation to Adelta-fiber high threshold mechanoreceptors. Neuroscience and Biobehavioral Reviews, 61, 225–238.

    Article  PubMed  Google Scholar 

  • Doherty, T. M. (1995). T-cell regulation of macrophage function. Current Opinion in Immunology, 7, 400–404.

    Article  CAS  PubMed  Google Scholar 

  • Drake, C. J. (2003). Embryonic and adult vasculogenesis. Birth Defects Research. Part C, Embryo Today: Reviews, 69, 73–82.

    Article  CAS  Google Scholar 

  • Driskell, R. R., & Watt, F. M. (2015). Understanding fibroblast heterogeneity in the skin. Trends in Cell Biology, 25, 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Driskell, R. R., et al. (2013). Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature, 504, 277–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubovy, P., Jancalek, R., & Kubek, T. (2013). Role of inflammation and cytokines in peripheral nerve regeneration. International Review of Neurobiology, 108, 173–206.

    Article  CAS  PubMed  Google Scholar 

  • Duffield, J. S. (2003). The inflammatory macrophage: A story of Jekyll and Hyde. Clinical Science, 104, 27–38.

    Article  CAS  PubMed  Google Scholar 

  • Duffield, J. S., et al. (2005). Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. The Journal of Clinical Investigation, 115, 56–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufraine, J., Funahashi, Y., & Kitajewski, J. (2008). Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 27, 5132–5137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunleavey, J. M., & Dudley, A. C. (2012). Vascular mimicry: Concepts and implications for anti-Angiogenic therapy. Current Angiogenesis, 1, 133–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, J. P., Zhang, X., Frauwirth, K. A., & Mosser, D. M. (2006). Biochemical and functional characterization of three activated macrophage populations. Journal of Leukocyte Biology, 80, 1298–1307.

    Article  CAS  PubMed  Google Scholar 

  • Egginton, S., Zhou, A. L., Brown, M. D., & Hudlicka, O. (2001). Unorthodox angiogenesis in skeletal muscle. Cardiovascular Research, 49, 634–646.

    Article  CAS  PubMed  Google Scholar 

  • Eming, S. A., Krieg, T., & Davidson, J. M. (2007a). Inflammation in wound repair: Molecular and cellular mechanisms. The Journal of Investigative Dermatology, 127, 514–525.

    Article  CAS  PubMed  Google Scholar 

  • Eming, S. A., et al. (2007b). Accelerated wound closure in mice deficient for interleukin-10. The American Journal of Pathology, 170, 188–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engin, C. (1998). Effects of calcitonin gene-related peptide on wound contraction in denervated and normal rat skin: A preliminary report. Plastic and Reconstructive Surgery, 101, 1887–1890.

    Article  CAS  PubMed  Google Scholar 

  • Engin, C., Demirkan, F., Ayhan, S., Atabay, K., & Baran, N. K. (1996). Delayed effect of denervation on wound contraction in rat skin. Plastic and Reconstructive Surgery, 98, 1063–1067.

    Article  CAS  PubMed  Google Scholar 

  • Epelman, S., et al. (2014). Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity, 40, 91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etchevers, H. C., Vincent, C., Le Douarin, N. M., & Couly, G. F. (2001). The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development, 128, 1059–1068.

    CAS  PubMed  Google Scholar 

  • Etich, J., et al. (2013). PECAM1(+)/Sca1(+)/CD38(+) vascular cells transform into myofibroblast-like cells in skin wound repair. PLoS One, 8, e53262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etxaniz, U., et al. (2014). Neural-competent cells of adult human dermis belong to the Schwann lineage. Stem Cell Reports, 3, 774–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadok, V. A., et al. (1998). Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. The Journal of Clinical Investigation, 101, 890–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantin, A., et al. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 116, 829–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson, M. W. J., & O’Kane, S. (2004). Scar-free healing: From embryonic mechanisms to adult therapeutic intervention. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359, 839–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank, S., et al. (1995). Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. The Journal of Biological Chemistry, 270, 12607–12613.

    Article  CAS  PubMed  Google Scholar 

  • Frontczak-Baniewicz, M., & Walski, M. (2002). Non-sprouting angiogenesis in neurohypophysis after traumatic injury of the cerebral cortex. Electron-microscopic studies. Neuro Endocrinology Letters, 23, 396–404.

    PubMed  Google Scholar 

  • Fukai, T., Takeda, A., & Uchinuma, E. (2005). Wound healing in denervated rat skin. Wound Repair and Regeneration, 13, 175–180.

    Article  PubMed  Google Scholar 

  • Gallagher, K. A., et al. (2007). Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. The Journal of Clinical Investigation, 117, 1249–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallucci, R. M., et al. (2000). Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. FASEB Journal, 14, 2525–2531.

    Article  CAS  PubMed  Google Scholar 

  • Gamse, R., Saria, A., Lundberg, J. M., & Theodorsson-Norheim, E. (1986). Behavioral and neurochemical changes after intracisternal capsaicin treatment of the Guinea pig. Neuroscience Letters, 64, 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Gaudet, A. D., Popovich, P. G., & Ramer, M. S. (2011). Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. Journal of Neuroinflammation, 8, 110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gautier, E. L., et al. (2012). Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature Immunology, 13, 1118–1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19, 71–82.

    Article  CAS  PubMed  Google Scholar 

  • Gensel, J. C., & Zhang, B. (2015). Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Research, 1619, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Gerber, J. S., & Mosser, D. M. (2001). Reversing lipopolysaccharide toxicity by ligating the macrophage Fc gamma receptors. Journal of Immunology, 166, 6861–6868.

    Article  CAS  Google Scholar 

  • Gerhardt, H., et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of Cell Biology, 161, 1163–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbings, S. L., et al. (2015). Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood, 126, 1357–1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibran, N. S., et al. (2002). Diminished neuropeptide levels contribute to the impaired cutaneous healing response associated with diabetes mellitus. The Journal of Surgical Research, 108, 122–128.

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux, F., et al. (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 330, 841–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godwin, J. W., Pinto, A. R., & Rosenthal, N. A. (2013). Macrophages are required for adult salamander limb regeneration. Proceedings of the National Academy of Sciences of the United States of America, 110, 9415–9420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goerdt, S., et al. (1999). Alternative versus classical activation of macrophages. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 67, 222–226.

    Article  CAS  Google Scholar 

  • Gomez Perdiguero, E., et al. (2015). Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 518, 547–551.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, S. (2003). Do macrophage innate immune receptors enhance atherogenesis? Developmental Cell, 5, 666–668.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: Mechanism and functions. Immunity, 32, 593–604.

    Article  CAS  PubMed  Google Scholar 

  • Goren, I., et al. (2007). Systemic anti-TNFalpha treatment restores diabetes-impaired skin repair in Ob/Ob mice by inactivation of macrophages. The Journal of Investigative Dermatology, 127, 2259–2267.

    Article  CAS  PubMed  Google Scholar 

  • Goren, I., et al. (2009). A transgenic mouse model of inducible macrophage depletion: Effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. The American Journal of Pathology, 175, 132–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratchev, A., et al. (2001). Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scandinavian Journal of Immunology, 53, 386–392.

    Article  CAS  PubMed  Google Scholar 

  • Greenburg, G. B., & Hunt, T. K. (1978). The proliferative response in vitro of vascular endothelial and smooth muscle cells exposed to wound fluids and macrophages. Journal of Cellular Physiology, 97, 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Greenhalgh, S. N., Conroy, K. P., & Henderson, N. C. (2015). Healing scars: Targeting pericytes to treat fibrosis. QJM, 108, 3–7.

    Article  CAS  PubMed  Google Scholar 

  • Gresset, A., et al. (2015). Boundary caps give rise to neurogenic stem cells and terminal glia in the skin. Stem Cell Reports, 5, 278–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guichet, P. O., et al. (2015). Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells, 33, 21–34.

    Article  CAS  PubMed  Google Scholar 

  • Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453, 314–321.

    Article  CAS  PubMed  Google Scholar 

  • Haas, T. L., et al. (2000). Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. American Journal of Physiology, 279, H1540–H1547.

    Article  CAS  PubMed  Google Scholar 

  • Hagner, S., Stahl, U., Knoblauch, B., McGregor, G. P., & Lang, R. E. (2002). Calcitonin receptor-like receptor: Identification and distribution in human peripheral tissues. Cell and Tissue Research, 310, 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, J. A. (2002). GM-CSF in inflammation and autoimmunity. Trends in Immunology, 23, 403–408.

    Article  CAS  PubMed  Google Scholar 

  • Han, M., Yang, X., Lee, J., Allan, C. H., & Muneoka, K. (2008). Development and regeneration of the neonatal digit tip in mice. Developmental Biology, 315, 125–135.

    Article  CAS  PubMed  Google Scholar 

  • He, H., et al. (2016). Perivascular macrophages limit permeability. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 2203–2212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert, S. P., & Stainier, D. Y. (2011). Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nature Reviews. Molecular Cell Biology, 12, 551–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Quintero, M., Kuri-Harcuch, W., Gonzalez Robles, A., & Castro-Muñozledo, F. (2006). Interleukin-6 promotes human epidermal keratinocyte proliferation and keratin cytoskeleton reorganization in culture. Cell and Tissue Research, 325, 77–90.

    Article  CAS  PubMed  Google Scholar 

  • Hetheridge, C., et al. (2012). The formin FMNL3 is a cytoskeletal regulator of angiogenesis. Journal of Cell Science, 125, 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata, K., & Kawabuchi, M. (2002). Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration. Microscopy Research and Technique, 57, 541–547.

    Article  PubMed  Google Scholar 

  • Hirota, H., Kiyama, H., Kishimoto, T., & Taga, T. (1996). Accelerated nerve regeneration in mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. Journal of Experimental Medicine, 183, 2627–2634.

    Article  CAS  PubMed  Google Scholar 

  • Hirschi, K. K., & D’Amore, P. A. (1996). Pericytes in the microvasculature. Cardiovascular Research, 32, 687–698.

    Article  CAS  PubMed  Google Scholar 

  • Hirsh, J., & Weitz, J. I. (1999). Thrombosis and anticoagulation. Seminars in Hematology, 36, 118–132.

    CAS  PubMed  Google Scholar 

  • Hordinsky, M., Ericson, M., Snow, D., Boeck, C., & Lee, W. S. (1999). Peribulbar innervation and substance P expression following nonpermanent injury to the human scalp hair follicle. The Journal of Investigative Dermatology. Symposium Proceedings, 4, 316–319.

    Article  CAS  PubMed  Google Scholar 

  • Hosoi, J., et al. (1993). Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature, 363, 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Hu, M. S., Moore, A. L., & Longaker, M. T. (2018). A fibroblast is not a fibroblast is not a fibroblast. Journal of Investigative Dermatology, 138, 729–730.

    Article  CAS  PubMed  Google Scholar 

  • Iribar, H., Perez-Lopez, V., Etxaniz, U., Gutierrez-Rivera, A., & Izeta, A. (2017). Schwann cells in the ventral dermis do not derive from Myf5-expressing precursors. Stem Cell Reports, 9, 1477–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida, Y., Gao, J.-L., & Murphy, P. M. (2008). Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. Journal of Immunology, 180, 569–579.

    Article  CAS  Google Scholar 

  • Ishikawa, S., et al. (2014). Effects of neuropeptides and their local administration to cutaneous wounds in sensory-impaired areas. Journal of Plastic Surgery and Hand Surgery, 48, 143–147.

    Article  PubMed  Google Scholar 

  • Jancso, N., Jancso-Gabor, A., & Szolcsanyi, J. (1967). Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. British Journal of Pharmacology and Chemotherapy, 31, 138–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffcoate, W. J., & Harding, K. G. (2003). Diabetic foot ulcers. Lancet, 361, 1545–1551.

    Article  PubMed  Google Scholar 

  • Jenkins, S. J., et al. (2011). Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science, 332, 1284–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins, S. J., et al. (2013). IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. The Journal of Experimental Medicine, 210, 2477–2491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon, H., et al. (1996). Pericytes from microvessel fragment produce type IV collagen and multiple laminin isoforms. Bioscience, Biotechnology, and Biochemistry, 60, 856–861.

    Article  CAS  PubMed  Google Scholar 

  • Jessen, K. n. R., & Mirsky, R. (2008). Negative regulation of myelination: Relevance for development, injury, and demyelinating disease. Glia, 56, 1552–1565.

    Article  PubMed  Google Scholar 

  • Jessen, K. R., & Mirsky, R. (2016). The repair Schwann cell and its function in regenerating nerves. Journal of Physiology, 594, 3521–3531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetten, N., et al. (2014). Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis, 17, 109–118.

    Article  CAS  PubMed  Google Scholar 

  • Jha, A. K., et al. (2015). Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 42, 419–430.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, K. E., & Wilgus, T. A. (2014). Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Advances in Wound Care, 3, 647–661.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston, A. P., et al. (2013). Sox2-mediated regulation of adult neural crest precursors and skin repair. Stem Cell Reports, 1, 38–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston, A. P., et al. (2016). Dedifferentiated Schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip. Cell Stem Cell, 19(4), 433–448.

    Article  CAS  PubMed  Google Scholar 

  • Jun, J.-I., & Lau, L. F. (2010). The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nature Cell Biology, 12, 676–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, S., et al. (2004). Induction of IL-10 in rat peritoneal macrophages and dendritic cells by glatiramer acetate. Journal of Neuroimmunology, 148, 63–73.

    Article  CAS  PubMed  Google Scholar 

  • Juniantito, V., et al. (2012). Immunophenotypical analyses of myofibroblasts in rat excisional wound healing: Possible transdifferentiation of blood vessel pericytes and perifollicular dermal sheath cells into myofibroblasts. Histology and Histopathology, 27, 515–527.

    CAS  PubMed  Google Scholar 

  • Kabara, M., et al. (2014). Immortalized multipotent pericytes derived from the vasa vasorum in the injured vasculature. A cellular tool for studies of vascular remodeling and regeneration. Laboratory Investigation, 94, 1340–1354.

    Article  CAS  PubMed  Google Scholar 

  • Kang, H., & Lichtman, J. W. (2013). Motor axon regeneration and muscle reinnervation in young adult and aged animals. Journal of Neuroscience, 33, 19480–19491.

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama, T., & Paro, R. (2013). Innate immune cells are dispensable for regenerative growth of imaginal discs. Mechanisms of Development, 130, 112–121.

    Article  CAS  PubMed  Google Scholar 

  • Kaukua, N., et al. (2014). Glial origin of mesenchymal stem cells in a tooth model system. Nature, 513, 551–554.

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto, K., & Matsuda, H. (2004). Nerve growth factor and wound healing. Progress in Brain Research, 146, 369–384.

    Article  CAS  PubMed  Google Scholar 

  • Kigerl, K. A., et al. (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. Journal of Neuroscience, 29, 13435–13444.

    Article  CAS  PubMed  Google Scholar 

  • Kilarski, W. W., & Gerwins, P. (2009). A new mechanism of blood vessel growth—hope for new treatment strategies. Discovery Medicine, 8, 23–27.

    PubMed  Google Scholar 

  • Kilicaslan, S. M., Cevher, S. C., & Peker, E. G. (2013). Ultrastructural changes in blood vessels in epidermal growth factor treated experimental cutaneous wound model. Pathology, Research and Practice, 209, 710–715.

    Article  PubMed  CAS  Google Scholar 

  • Kim, L. R., Whelpdale, K., Zurowski, M., & Pomeranz, B. (1998). Sympathetic denervation impairs epidermal healing in cutaneous wounds. Wound Repair and Regeneration, 6, 194–201.

    Article  CAS  PubMed  Google Scholar 

  • King, A., Balaji, S., Keswani, S. G., & Crombleholme, T. M. (2014). The role of stem cells in wound angiogenesis. Advances in Wound Care, 3, 614–625.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, D., & Martini, R. (2016). Myelin and macrophages in the PNS: An intimate relationship in trauma and disease. Brain Research, 1641, 130–138.

    Article  CAS  PubMed  Google Scholar 

  • Koh, T. J., Novak, M. L., & Mirza, R. E. (2013). Assessing macrophage phenotype during tissue repair. Methods in Molecular Biology, 1037, 507–518.

    Article  CAS  PubMed  Google Scholar 

  • Korosec, A., et al. (2018). Lineage identity and location within the dermis determine the function of papillary and reticular fibroblasts in human skin. Journal of Investigative Dermatology, 139(2), 342–351.

    Article  PubMed  CAS  Google Scholar 

  • Kreider, T., Anthony, R. M., Urban, J. F., & Gause, W. C. (2007). Alternatively activated macrophages in helminth infections. Current Opinion in Immunology, 19, 448–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna Priya, S., et al. (2016). Tumour angiogenesis-origin of blood vessels. International Journal of Cancer, 139, 729–735.

    Article  CAS  PubMed  Google Scholar 

  • Kroner, A., et al. (2014). TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron, 83, 1098–1116.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., & Brockes, J. P. (2012). Nerve dependence in tissue, organ, and appendage regeneration. Trends in Neurosciences, 35, 691–699.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Nevill, G., Brockes, J. P., & Forge, A. (2010). A comparative study of gland cells implicated in the nerve dependence of salamander limb regeneration. Journal of Anatomy, 217, 16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuncova, J., Svíglerová, J., Tonar, Z., & Slavíková, J. (2005). Heterogenous changes in neuropeptide Y, norepinephrine and epinephrine concentrations in the hearts of diabetic rats. Autonomic Neuroscience : Basic & Clinical, 121, 7–15.

    Article  CAS  Google Scholar 

  • Kurz, H., Burri, P. H., & Djonov, V. G. (2003). Angiogenesis and vascular remodeling by intussusception: From form to function. News in Physiological Sciences, 18, 65–70.

    PubMed  Google Scholar 

  • Lambert, J. M., Lopez, E. F., & Lindsey, M. L. (2008). Macrophage roles following myocardial infarction. International Journal of Cardiology, 130, 147–158.

    Article  PubMed  Google Scholar 

  • Lang, R., Patel, D., Morris, J. J., Rutschman, R. L., & Murray, P. J. (2002). Shaping gene expression in activated and resting primary macrophages by IL-10. Journal of Immunology, 169, 2253–2263.

    Article  CAS  Google Scholar 

  • Laverdet, B., et al. (2015). Skin innervation: Important roles during normal and pathological cutaneous repair. Histology and Histopathology, 30, 875–892.

    CAS  PubMed  Google Scholar 

  • Lavine, K. J., et al. (2014). Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 111, 16029–16034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leavitt, T., et al. (2016). Scarless wound healing: Finding the right cells and signals. Cell and Tissue Research, 365, 483–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, P. C., et al. (1999). Impaired wound healing and angiogenesis in eNOS-deficient mice. The American Journal of Physiology, 277, H1600–H1608.

    CAS  PubMed  Google Scholar 

  • Lee, R. H., et al. (2000). Inhibition of tumor necrosis factor-alpha attenuates wound breaking strength in rats. Wound Repair and Regeneration, 8, 547–553.

    Article  CAS  PubMed  Google Scholar 

  • Leibovich, S. J., & Ross, R. (1975). The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. The American Journal of Pathology, 78, 71–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewin, G. R., & Mendell, L. M. (1993). Nerve growth factor and nociception. Trends in Neurosciences, 16, 353–359.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., & Ginty, D. D. (2014). The structure and organization of lanceolate mechanosensory complexes at mouse hair follicles. eLife, 3, e01901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, A. K., Koroly, M. J., Schattenkerk, M. E., Malt, R. A., & Young, M. (1980). Nerve growth factor: Acceleration of the rate of wound healing in mice. Proceedings of the National Academy of Sciences of the United States of America, 77, 4379–4381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Yan, B., Shi, Y.-Q., Zhang, W.-Q., & Wen, Z.-L. (2012). Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. The Journal of Biological Chemistry, 287, 25353–25360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locati, M., et al. (2002). Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. Journal of Immunology, 168, 3557–3562.

    Article  CAS  Google Scholar 

  • Loots, M. A., et al. (1998). Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. The Journal of Investigative Dermatology, 111, 850–857.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, T., et al. (2010). Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology, 184, 3964–3977.

    Article  CAS  Google Scholar 

  • Madlener, M., Parks, W. C., & Werner, S. (1998). Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Experimental Cell Research, 242, 201–210.

    Article  CAS  PubMed  Google Scholar 

  • Mahdavian Delavary, B., van der Veer, W. M., van Egmond, M., Niessen, F. B., & Beelen, R. H. J. (2011). Macrophages in skin injury and repair. Immunobiology, 216, 753–762.

    Article  PubMed  CAS  Google Scholar 

  • Makanya, A. N., Hlushchuk, R., & Djonov, V. G. (2009). Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis, 12, 113–123.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23, 549–555.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani, A., et al. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25, 677–686.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A., & Locati, M. (2013). Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of Pathology, 229, 176–185.

    Article  CAS  PubMed  Google Scholar 

  • Mapp, P. I., McWilliams, D. F., Turley, M. J., Hargin, E., & Walsh, D. A. (2012). A role for the sensory neuropeptide calcitonin gene-related peptide in endothelial cell proliferation in vivo. British Journal of Pharmacology, 166, 1261–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcola, M., & Rodrigues, C. E. (2015). Endothelial progenitor cells in tumor angiogenesis: Another brick in the wall. Stem Cells International, 2015, 832649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin, P., & Leibovich, S. J. (2005). Inflammatory cells during wound repair: The good, the bad and the ugly. Trends in Cell Biology, 15, 599–607.

    Article  CAS  PubMed  Google Scholar 

  • Martin, P., et al. (2003). Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Current Biology, 13, 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, F. O., & Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Reports, 6, 13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Frontiers in Bioscience, 13, 453–461.

    Article  CAS  PubMed  Google Scholar 

  • Martini, R., Fischer, S., López-Vales, R., & David, S. (2008). Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia, 56, 1566–1577.

    Article  PubMed  Google Scholar 

  • Massena, S., et al. (2015). Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood, 126, 2016–2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo, R. B., Reichner, J. S., & Albina, J. E. (1994). Interleukin-6 activity in wounds. The American Journal of Physiology, 266, R1840–R1844.

    CAS  PubMed  Google Scholar 

  • McGovern, N., et al. (2014). Human dermal CD14+ cells are a transient population of monocyte-derived macrophages. Immunity, 41, 465–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mescher, A. L., & Kiffmeyer, W. R. (1992). Axonal release of transferrin in peripheral nerves of axolotls during regeneration. Monographs in Developmental Biology, 23, 100–109.

    CAS  PubMed  Google Scholar 

  • Mescher, A. L., Connell, E., Hsu, C., Patel, C., & Overton, B. (1997). Transferrin is necessary and sufficient for the neural effect on growth in amphibian limb regeneration blastemas. Development, Growth & Differentiation, 39, 677–684.

    Article  CAS  Google Scholar 

  • Meszaros, A. J., Reichner, J. S., & Albina, J. E. (1999). Macrophage phagocytosis of wound neutrophils. Journal of Leukocyte Biology, 65, 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Meszaros, A. J., Reichner, J. S., & Albina, J. E. (2000). Macrophage-induced neutrophil apoptosis. Journal of Immunology, 165, 435–441.

    Article  CAS  Google Scholar 

  • Micera, A., et al. (2001). Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair. Proceedings of the National Academy of Sciences of the United States of America, 98, 6162–6167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton, M., & Thatcher, N. (1998). G- and GM-CSF. International Journal of Antimicrobial Agents, 10, 91–93.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M. S., Buck, S. H., Sipes, I. G., Yamamura, H. I., & Burks, T. F. (1982). Regulation of substance P by nerve growth factor: Disruption by capsaicin. Brain Research, 250, 193–196.

    Article  CAS  PubMed  Google Scholar 

  • Mirza, R., & Koh, T. J. (2011). Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine, 56, 256–264.

    Article  CAS  PubMed  Google Scholar 

  • Mirza, R. E., & Koh, T. J. (2015). Contributions of cell subsets to cytokine production during normal and impaired wound healing. Cytokine, 71, 409–412.

    Article  CAS  PubMed  Google Scholar 

  • Mirza, R., DiPietro, L. A., & Koh, T. J. (2009). Selective and specific macrophage ablation is detrimental to wound healing in mice. The American Journal of Pathology, 175, 2454–2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza, R. E., Fang, M. M., Ennis, W. J., & Koh, T. J. (2013). Blocking interleukin-1beta induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes, 62, 2579–2587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza, R. E., Fang, M. M., Weinheimer-Haus, E. M., Ennis, W. J., & Koh, T. J. (2014). Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes, 63, 1103–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokarram, N., Merchant, A., Mukhatyar, V., Patel, G., & Bellamkonda, R. V. (2012). Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials, 33, 8793–8801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molawi, K., et al. (2014). Progressive replacement of embryo-derived cardiac macrophages with age. The Journal of Experimental Medicine, 211, 2151–2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagna, W., & Parakkal, P. (1974). In W. Montagna & P. F. Parakkal (Eds.), The structure and function of skin. Cambridge, MA: Academic Press.

    Google Scholar 

  • Morikawa, S., & Ezaki, T. (2011). Phenotypic changes and possible angiogenic roles of pericytes during wound healing in the mouse skin. Histology and Histopathology, 26, 979–995.

    PubMed  Google Scholar 

  • Morikawa, S., et al. (2002). Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. The American Journal of Pathology, 160, 985–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosser, D. M. (2003). The many faces of macrophage activation. Journal of Leukocyte Biology, 73, 209–212.

    Article  CAS  PubMed  Google Scholar 

  • Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 8, 958–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosser, D. M., & Karp, C. L. (1999). Receptor mediated subversion of macrophage cytokine production by intracellular pathogens. Current Opinion in Immunology, 11, 406–411.

    Article  CAS  PubMed  Google Scholar 

  • Motegi, S. I., & Ishikawa, O. (2017). Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth. Journal of Dermatological Science, 86, 83–89.

    Article  CAS  PubMed  Google Scholar 

  • Muangman, P., et al. (2004). Nerve growth factor accelerates wound healing in diabetic mice. Wound Repair and Regeneration, 12, 44–52.

    Article  PubMed  Google Scholar 

  • Mukouyama, Y. S., Shin, D., Britsch, S., Taniguchi, M., & Anderson, D. J. (2002). Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell, 109, 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews. Cancer, 8, 618–631.

    Article  CAS  PubMed  Google Scholar 

  • Nadeau, S., et al. (2011). Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: Implications for neuropathic pain. Journal of Neuroscience, 31, 12533–12542.

    Article  CAS  PubMed  Google Scholar 

  • Nakayasu, K. (1988). Origin of pericytes in neovascularization of rat cornea. Japanese Journal of Ophthalmology, 32, 105–112.

    CAS  PubMed  Google Scholar 

  • Napoli, I., et al. (2012). A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron, 73, 729–742.

    Article  CAS  PubMed  Google Scholar 

  • Natesan, S., Wrice, N. L., Baer, D. G., & Christy, R. J. (2011). Debrided skin as a source of autologous stem cells for wound repair. Stem Cells, 29, 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  • Nehls, V., & Drenckhahn, D. (1993). The versatility of microvascular pericytes: From mesenchyme to smooth muscle? Histochemistry, 99, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Nehls, V., Denzer, K., & Drenckhahn, D. (1992). Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell and Tissue Research, 270, 469–474.

    Article  CAS  PubMed  Google Scholar 

  • Niemi, J. P., et al. (2013). A critical role for macrophages near axotomized neuronal cell bodies in stimulating nerve regeneration. Journal of Neuroscience, 33, 16236–16248.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, H., & Asahara, T. (2005). Bone marrow-derived endothelial progenitor cells for neovascular formation. EXS, 94, 147–154.

    Google Scholar 

  • Nithya, M., Suguna, L., & Rose, C. (2003). The effect of nerve growth factor on the early responses during the process of wound healing. Biochimica et Biophysica Acta, 1620, 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Novak, M. L., & Koh, T. J. (2013a). Phenotypic transitions of macrophages orchestrate tissue repair. The American Journal of Pathology, 183, 1352–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak, M. L., & Koh, T. J. (2013b). Macrophage phenotypes during tissue repair. Journal of Leukocyte Biology, 93, 875–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuno, Y., Nakamura-Ishizu, A., Kishi, K., Suda, T., & Kubota, Y. (2011). Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood, 117, 5264–5272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olingy, C. E., et al. (2017). Non-classical monocytes are biased progenitors of wound healing macrophages during soft tissue injury. Scientific Reports, 7, 447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Shea, J. J., & Murray, P. J. (2008). Cytokine signaling modules in inflammatory responses. Immunity, 28, 477–487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Outtz, H. H., Wu, J. K., Wang, X., & Kitajewski, J. (2010). Notch1 deficiency results in decreased inflammation during wound healing and regulates vascular endothelial growth factor receptor-1 and inflammatory cytokine expression in macrophages. Journal of Immunology, 185, 4363–4373.

    Article  CAS  Google Scholar 

  • Outtz, H. H., Tattersall, I. W., Kofler, N. M., Steinbach, N., & Kitajewski, J. (2011). Notch1 controls macrophage recruitment and notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood, 118, 3436–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozerdem, U., & Stallcup, W. B. (2003). Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis, 6, 241–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Painter, M. W., et al. (2014). Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. Neuron, 83, 331–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paku, S., et al. (2011). A new mechanism for pillar formation during tumor-induced intussusceptive angiogenesis: Inverse sprouting. The American Journal of Pathology, 179, 1573–1585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palazzo, E., et al. (2012). Role of neurotrophins on dermal fibroblast survival and differentiation. Journal of Cellular Physiology, 227, 1017–1025.

    Article  CAS  PubMed  Google Scholar 

  • Paquet-Fifield, S., et al. (2009). A role for pericytes as microenvironmental regulators of human skin tissue regeneration. The Journal of Clinical Investigation, 119, 2795–2806.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parfejevs, V., et al. (2018a). Injury-activated glial cells promote wound healing of the adult skin in mice. Nature Communications, 9, 236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parfejevs, V., Antunes, A. T., & Sommer, L. (2018b). Injury and stress responses of adult neural crest-derived cells. Developmental Biology, 444, S356–S365.

    Google Scholar 

  • Park, K. A., et al. (2010). Signaling pathways that mediate nerve growth factor-induced increase in expression and release of calcitonin gene-related peptide from sensory neurons. Neuroscience, 171, 910–923.

    Article  CAS  PubMed  Google Scholar 

  • Parrinello, S., et al. (2010). EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell, 143, 145–155.

    Article  CAS  PubMed  Google Scholar 

  • Pascual, D. W., & Bost, K. L. (1990). Substance P production by P388D1 macrophages: A possible autocrine function for this neuropeptide. Immunology, 71, 52–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passlick, B., Flieger, D., & Ziegler-Heitbrock, H. W. (1989). Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood, 74, 2527–2534.

    CAS  PubMed  Google Scholar 

  • Patan, S., et al. (2001). Vascular morphogenesis and remodeling in a model of tissue repair: Blood vessel formation and growth in the ovarian pedicle after ovariectomy. Circulation Research, 89, 723–731.

    Article  CAS  PubMed  Google Scholar 

  • Peluffo, H., et al. (2015). CD300f immunoreceptor contributes to peripheral nerve regeneration by the modulation of macrophage inflammatory phenotype. Journal of Neuroinflammation, 12, 145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perdiguero, E., et al. (2011). p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. The Journal of Cell Biology, 195, 307–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrier, P., et al. (2004). Distinct transcriptional programs activated by interleukin-10 with or without lipopolysaccharide in dendritic cells: Induction of the B cell-activating chemokine, CXC chemokine ligand 13. Journal of Immunology, 172, 7031–7042.

    Article  CAS  Google Scholar 

  • Perry, V. H., Tsao, J. W., Fearn, S., & Brown, M. C. (1995). Radiation-induced reductions in macrophage recruitment have only slight effects on myelin degeneration in sectioned peripheral nerves of mice. European Journal of Neuroscience, 7, 271–280.

    Article  CAS  PubMed  Google Scholar 

  • Philippeos, C., et al. (2018). Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. Journal of Investigative Dermatology, 138, 811–825.

    Article  CAS  PubMed  Google Scholar 

  • Polverini, P. J. (2011). Angiogenesis and wound healing: Basic discoveries, clinical implications, and therapeutic opportunities. Endodontic Topics, 24, 130–145.

    Article  Google Scholar 

  • Porcheray, F., et al. (2005). Macrophage activation switching: An asset for the resolution of inflammation. Clinical and Experimental Immunology, 142, 481–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan, L., et al. (2011). Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing. The Journal of Surgical Research, 167, 336–342.

    Article  CAS  PubMed  Google Scholar 

  • Prazeres, P., et al. (2018). Perivascular cell alphav integrins as a target to treat skeletal muscle fibrosis. The International Journal of Biochemistry & Cell Biology, 99, 109–113.

    Article  CAS  Google Scholar 

  • Provitera, V., et al. (2007). Myelinated nerve endings in human skin. Muscle & Nerve, 35, 767–775.

    Article  Google Scholar 

  • Radomska, K. J., & Topilko, P. (2017). Boundary cap cells in development and disease. Current Opinion in Neurobiology, 47, 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Raes, G., et al. (2002). FIZZ1 and Ym as tools to discriminate between differentially activated macrophages. Developmental Immunology, 9, 151–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmani, W., et al. (2014). Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Developmental Cell, 31, 543–558.

    Article  CAS  PubMed  Google Scholar 

  • Ramaglia, V., et al. (2008). Soluble complement receptor 1 protects the peripheral nerve from early axon loss after injury. American Journal of Pathology, 172, 1043–1052.

    Article  PubMed  PubMed Central  Google Scholar 

  • Redmer, D. A., et al. (2001). Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum. Biology of Reproduction, 65, 879–889.

    Article  CAS  PubMed  Google Scholar 

  • Reese, T. A., et al. (2007). Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature, 447, 92–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman, J., Li, J., Orschell, C. M., & March, K. L. (2003). Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 107, 1164–1169.

    Article  PubMed  Google Scholar 

  • Reinisch, C. M., & Tschachler, E. (2005). The touch dome in human skin is supplied by different types of nerve fibers. Annals of Neurology, 58, 88–95.

    Article  PubMed  Google Scholar 

  • Reynolds, L. P., & Redmer, D. A. (1998). Expression of the angiogenic factors, basic fibroblast growth factor and vascular endothelial growth factor, in the ovary. Journal of Animal Science, 76, 1671–1681.

    Article  CAS  PubMed  Google Scholar 

  • Rezaie, P., & Male, D. (2002). Mesoglia & microglia—a historical review of the concept of mononuclear phagocytes within the central nervous system. Journal of the History of the Neurosciences, 11, 325–374.

    Article  PubMed  Google Scholar 

  • Rhodin, J. A., & Fujita, H. (1989). Capillary growth in the mesentery of normal young rats. Intravital video and electron microscope analyses. Journal of Submicroscopic Cytology and Pathology, 21, 1–34.

    CAS  PubMed  Google Scholar 

  • Ribatti, D., & Crivellato, E. (2012). Sprouting angiogenesis, a reappraisal. Developmental Biology, 372, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Ribatti, D., Vacca, A., Nico, B., Roncali, L., & Dammacco, F. (2001). Postnatal vasculogenesis. Mechanisms of Development, 100, 157–163.

    Article  CAS  PubMed  Google Scholar 

  • Ricardo, S. D., van Goor, H., & Eddy, A. A. (2008). Macrophage diversity in renal injury and repair. The Journal of Clinical Investigation, 118, 3522–3530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards, A. M., Floyd, D. C., Terenghi, G., & McGrouther, D. A. (1999). Cellular changes in denervated tissue during wound healing in a rat model. The British Journal of Dermatology, 140, 1093–1099.

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich, Y., et al. (2015). Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science, 348, aaa2151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Risau, W., et al. (1988). Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development, 102, 471–478.

    CAS  PubMed  Google Scholar 

  • Robins, S. P., et al. (2003). Increased skin collagen extractability and proportions of collagen type III are not normalized after 6 months healing of human excisional wounds. Journal of Investigative Dermatology, 121, 267–272.

    Article  CAS  PubMed  Google Scholar 

  • Rodero, M. P., Legrand, J. M. D., Bou-Gharios, G., & Khosrotehrani, K. (2013). Wound-associated macrophages control collagen 1alpha2 transcription during the early stages of skin wound healing. Experimental Dermatology, 22, 143–145.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, A., et al. (2013). Phenotypical differences in connective tissue cells emerging from microvascular pericytes in response to overexpression of PDGF-B and TGF-beta1 in normal skin in vivo. The American Journal of Pathology, 182, 2132–2146.

    Article  CAS  PubMed  Google Scholar 

  • Rook, J. M., Hasan, W., & McCarson, K. E. (2009). Morphine-induced early delays in wound closure: Involvement of sensory neuropeptides and modification of neurokinin receptor expression. Biochemical Pharmacology, 77, 1747–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roosterman, D., Goerge, T., Schneider, S. W., Bunnett, N. W., & Steinhoff, M. (2006). Neuronal control of skin function: The skin as a neuroimmunoendocrine organ. Physiological Reviews, 86, 1309–1379.

    Article  CAS  PubMed  Google Scholar 

  • Rotshenker, S. (2011). Wallerian degeneration: The innate-immune response to traumatic nerve injury. Journal of Neuroinflammation, 8, 109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruetze, M., et al. (2013). A novel niche for skin derived precursors in non-follicular skin. Journal of Dermatological Science, 69, 132–139.

    Article  PubMed  Google Scholar 

  • Rundhaug, J. E. (2005). Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine, 9, 267–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutlin, M., et al. (2014). The cellular and molecular basis of direction selectivity of Adelta-LTMRs. Cell, 159, 1640–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rymo, S. F., et al. (2011). A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS One, 6, e15846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma, R., et al. (2016). Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. Journal of Neuroinflammation, 13, 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki, M., et al. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180, 2581–2587.

    Article  CAS  Google Scholar 

  • Sato, Y., & Rifkin, D. B. (1989). Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. The Journal of Cell Biology, 109, 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Sava, P., Cook, I. O., Mahal, R. S., & Gonzalez, A. L. (2015). Human microvascular pericyte basement membrane remodeling regulates neutrophil recruitment. Microcirculation, 22, 54–67.

    Article  CAS  PubMed  Google Scholar 

  • Schlundt, C., et al. (2018). Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone, 106, 78–89.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, M. C., & Varner, J. A. (2012). Myeloid cells in tumor inflammation. Vascular Cell, 4, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoefl, G. I. (1963). Studies on inflammation. Iii. Growing capillaries: Their structure and permeability. Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin, 337, 97–141.

    CAS  PubMed  Google Scholar 

  • Schulz, C., et al. (2012). A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science, 336, 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Scott, C. L., et al. (2016). Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nature Communications, 7, 10321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scotton, C. J., et al. (2005). Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. Journal of Immunology, 174, 834–845.

    Article  CAS  Google Scholar 

  • Seifert, A. W., et al. (2012a). Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature, 489, 561–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert, A. W., et al. (2012b). The influence of fundamental traits on mechanisms controlling appendage regeneration. Biological Reviews of the Cambridge Philosophical Society, 87, 330–345.

    Article  PubMed  Google Scholar 

  • Senapati, A., et al. (1986). Depletion of neuropeptides during wound healing in rat skin. Neuroscience Letters, 71, 101–105.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, S. D., Kobayashi, D. K., & Ley, T. J. (1993). Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. Journal of Biological Chemistry, 268, 23824–23829.

    CAS  PubMed  Google Scholar 

  • Shi, C., & Pamer, E. G. (2011). Monocyte recruitment during infection and inflammation. Nature Reviews Immunology, 11, 762–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Q., et al. (1994). Proof of fallout endothelialization of impervious Dacron grafts in the aorta and inferior vena cava of the dog. Journal of Vascular Surgery, 20, 546–556. discussion 556–557.

    Article  CAS  PubMed  Google Scholar 

  • Shi, C. M., Qu, J. F., & Cheng, T. M. (2003). Effects of the nerve growth factor on the survival and wound healing in mice with combined radiation and wound injury. Journal of Radiation Research, 44, 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Silva, W. N., et al. (2018a). Role of Schwann cells in cutaneous wound healing. Wound Repair and Regeneration, 26(5), 392–397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva, W. N., et al. (2018b). Macrophage-derived GPNMB accelerates skin healing. Experimental Dermatology, 27, 630–635.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simoes, M. G., et al. (2014). Denervation impairs regeneration of amputated zebrafish fins. BMC Developmental Biology, 14, 49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sims, D. E. (1986). The pericyte—a review. Tissue & Cell, 18, 153–174.

    Article  CAS  Google Scholar 

  • Sindrilaru, A., et al. (2011). An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. The Journal of Clinical Investigation, 121, 985–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer, M. (1951). Introduction of regeneration of forelimb of the frog by augmentation of the nerve supply. Proceedings of the Society for Experimental Biology and Medicine, 76, 413–416.

    Article  CAS  PubMed  Google Scholar 

  • Singer, M. (1952). The influence of the nerve in regeneration of the amphibian extremity. The Quarterly Review of Biology, 27, 169–200.

    Article  CAS  PubMed  Google Scholar 

  • Singer, M. (1964). The trophic quality of the neuron: Some theoretical considerations. Progress in Brain Research, 13, 228–232.

    Article  CAS  PubMed  Google Scholar 

  • Smith, P. G., & Liu, M. (2002). Impaired cutaneous wound healing after sensory denervation in developing rats: Effects on cell proliferation and apoptosis. Cell and Tissue Research, 307, 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Sorrell, J. M., & Caplan, A. I. (2004). Fibroblast heterogeneity: More than skin deep. Journal of Cell Science, 117, 667–675.

    Article  CAS  PubMed  Google Scholar 

  • Souza, B. R., Cardoso, J. F., Amadeu, T. P., Desmouliere, A., & Costa, A. M. (2005). Sympathetic denervation accelerates wound contraction but delays reepithelialization in rats. Wound Repair and Regeneration, 13, 498–505.

    Article  PubMed  Google Scholar 

  • Spanel-Borowski, K., Amselgruber, W., & Sinowatz, F. (1987). Capillary sprouts in ovaries of immature superstimulated golden hamsters: A SEM study of microcorrosion casts. Anatomy and Embryology, 176, 387–391.

    Article  CAS  PubMed  Google Scholar 

  • Spenny, M. L., et al. (2002). Neutral endopeptidase inhibition in diabetic wound repair. Wound Repair and Regeneration, 10, 295–301.

    Article  PubMed  Google Scholar 

  • Stefater, J. A., et al. (2011). Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature, 474, 511–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein, M., Keshav, S., Harris, N., & Gordon, S. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. The Journal of Experimental Medicine, 176, 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Stocum, D. L. (2011). The role of peripheral nerves in urodele limb regeneration. The European Journal of Neuroscience, 34, 908–916.

    Article  PubMed  Google Scholar 

  • Stout, R. D. (2010). Editorial: Macrophage functional phenotypes: No alternatives in dermal wound healing? Journal of Leukocyte Biology, 87, 19–21.

    Article  CAS  PubMed  Google Scholar 

  • Stout, R. D., et al. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology, 175, 342–349.

    Article  CAS  Google Scholar 

  • Stramer, B., & Martin, P. (2005). Cell biology: Master regulators of sealing and healing. Current Biology, 15, R425–R427.

    Article  CAS  PubMed  Google Scholar 

  • Stratton, J. A., & Shah, P. T. (2016). Macrophage polarization in nerve injury: Do Schwann cells play a role? Neural Regeneration Research, 11, 53–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stratton, J. A., et al. (2016). The immunomodulatory properties of adult skin-derived precursor Schwann cells: Implications for peripheral nerve injury therapy. The European Journal of Neuroscience, 43, 365–375.

    Article  PubMed  Google Scholar 

  • Strauss-Ayali, D., Conrad, S. M., & Mosser, D. M. (2007). Monocyte subpopulations and their differentiation patterns during infection. Journal of Leukocyte Biology, 82, 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Styp-Rekowska, B., Hlushchuk, R., Pries, A. R., & Djonov, V. (2011). Intussusceptive angiogenesis: Pillars against the blood flow. Acta Physiologica, 202, 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Summan, M., et al. (2006). Macrophages and skeletal muscle regeneration: A clodronate-containing liposome depletion study. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 290, R1488–R1495.

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan, S., & Griffin, M. D. (2008). First responders: Understanding monocyte-lineage traffic in the acutely injured kidney. Kidney International, 74, 1509–1511.

    Article  CAS  PubMed  Google Scholar 

  • Tabib, T., Morse, C., Wang, T., Chen, W., & Lafyatis, R. (2018). SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. Journal of Investigative Dermatology, 138, 802–810.

    Article  CAS  PubMed  Google Scholar 

  • Tagawa, S., et al. (2015). Determination of early and late endothelial progenitor cells in peripheral circulation and their clinical association with coronary artery disease. International Journal of Vascular Medicine, 2015, 674213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tammela, T., et al. (2008). Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 454, 656–660.

    Article  CAS  PubMed  Google Scholar 

  • Tamoutounour, S., et al. (2013). Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity, 39, 925–938.

    Article  CAS  PubMed  Google Scholar 

  • Tattersall, I. W., et al. (2016). In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates notch signaling function in the vascular microenvironment. Angiogenesis, 19, 201–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakral, K. K., Goodson, W. H., & Hunt, T. K. (1979). Stimulation of wound blood vessel growth by wound macrophages. The Journal of Surgical Research, 26, 430–436.

    Article  CAS  PubMed  Google Scholar 

  • Thomay, A. A., et al. (2009). Disruption of interleukin-1 signaling improves the quality of wound healing. The American Journal of Pathology, 174, 2129–2136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmermans, F., et al. (2007). Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1572–1579.

    Article  CAS  PubMed  Google Scholar 

  • Toda, M., et al. (2008). Neuronal system-dependent facilitation of tumor angiogenesis and tumor growth by calcitonin gene-related peptide. Proceedings of the National Academy of Sciences of the United States of America, 105, 13550–13555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toma, J. G., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778–784.

    Article  CAS  PubMed  Google Scholar 

  • Tredget, E. E., Yang, L., Delehanty, M., Shankowsky, H., & Scott, P. G. (2006). Polarized Th2 cytokine production in patients with hypertrophic scar following thermal injury. Journal of Interferon & Cytokine Research, 26, 179–189.

    Article  CAS  Google Scholar 

  • Troidl, C., et al. (2009). Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 13, 3485–3496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trost, A., et al. (2016). Brain and retinal pericytes: Origin, function and role. Frontiers in Cellular Neuroscience, 10, 20. https://doi.org/10.3389/fncel.2016.00020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschachler, E., et al. (2004). Sheet preparations expose the dermal nerve plexus of human skin and render the dermal nerve end organ accessible to extensive analysis. The Journal of Investigative Dermatology, 122, 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Tung, J. J., Tattersall, I. W., & Kitajewski, J. (2012). Tips, stalks, tubes: Notch-mediated cell fate determination and mechanisms of tubulogenesis during angiogenesis. Cold Spring Harbor Perspectives in Medicine, 2, a006601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uchiyama, A., et al. (2014). MFG-E8 regulates angiogenesis in cutaneous wound healing. The American Journal of Pathology, 184, 1981–1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vagesjo, E., et al. (2018). Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America, 115, 1895–1900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vapniarsky, N., Arzi, B., Hu, J. C., Nolta, J. A., & Athanasiou, K. A. (2015). Concise review: Human dermis as an autologous source of stem cells for tissue engineering and regenerative medicine. Stem Cells Translational Medicine, 4, 1187–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas, M. E., Watanabe, J., Singh, S. J., Robinson, W. H., & Barres, B. A. (2010). Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proceedings of the National Academy of Sciences of the United States of America, 107, 11993–11998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velazquez, O. C. (2007). Angiogenesis and vasculogenesis: Inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. Journal of Vascular Surgery, 45(Suppl A), A39–A47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verreck, F. A. W., et al. (2004). Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proceedings of the National Academy of Sciences of the United States of America, 101, 4560–4565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verreck, F. A. W., de Boer, T., Langenberg, D. M. L., van der Zanden, L., & Ottenhoff, T. H. M. (2006). Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. Journal of Leukocyte Biology, 79, 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Villalta, S. A., et al. (2011). Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Human Molecular Genetics, 20, 790–805.

    Article  CAS  PubMed  Google Scholar 

  • Virgintino, D., et al. (2007). An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis, 10, 35–45.

    Article  PubMed  Google Scholar 

  • Vogler, R., Sauer, B., Kim, D. S., Schäfer-Korting, M., & Kleuser, B. (2003). Sphingosine-1-phosphate and its potentially paradoxical effects on critical parameters of cutaneous wound healing. The Journal of Investigative Dermatology, 120, 693–700.

    Article  CAS  PubMed  Google Scholar 

  • Wang, N., & Gibbons, C. H. (2013). Skin biopsies in the assessment of the autonomic nervous system. Handb Clin Neurol, 117, 371–378.

    Article  PubMed  Google Scholar 

  • Wang, Y.-C., et al. (2010). Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Research, 70, 4840–4849.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, T., & Raff, M. C. (1988). Retinal astrocytes are immigrants from the optic nerve. Nature, 332, 834–837.

    Article  CAS  PubMed  Google Scholar 

  • Wehner, S., et al. (2010). Mechanical strain and TLR4 synergistically induce cell-specific inflammatory gene expression in intestinal smooth muscle cells and peritoneal macrophages. American Journal of Physiology. Gastrointestinal and Liver Physiology, 299, G1187–G1197.

    Article  CAS  PubMed  Google Scholar 

  • Wei, T., et al. (2012). Keratinocyte expression of inflammatory mediators plays a crucial role in substance P-induced acute and chronic pain. Journal of Neuroinflammation, 9, 181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitkamp, B., Cullen, P., Plenz, G., Robenek, H., & Rauterberg, J. (1999). Human macrophages synthesize type VIII collagen in vitro and in the atherosclerotic plaque. FASEB Journal, 13, 1445–1457.

    Article  CAS  PubMed  Google Scholar 

  • Werner, S., & Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiological Reviews, 83, 835–870.

    Article  CAS  PubMed  Google Scholar 

  • West, H., Richardson, W. D., & Fruttiger, M. (2005). Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development, 132, 1855–1862.

    Article  CAS  PubMed  Google Scholar 

  • Willenborg, S., & Eming, S. A. (2014). Macrophages—sensors and effectors coordinating skin damage and repair. Journal of the German Society of Dermatology, 12, 214–221,. 214–223.

    PubMed  Google Scholar 

  • Willenborg, S., et al. (2012). CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood, 120, 613–625.

    Article  CAS  PubMed  Google Scholar 

  • Wynn, T. A., et al. (2011). Quantitative assessment of macrophage functions in repair and fibrosis. Current Protocols in Immunology,. Chapter 14, Unit14.22.

    Google Scholar 

  • Wynn, T. A., Chawla, A., & Pollard, J. W. (2013). Macrophage biology in development, homeostasis and disease. Nature, 496, 445–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, Y., et al. (2013). Perivascular hair follicle stem cells associate with a venule annulus. The Journal of Investigative Dermatology, 133, 2324–2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xueyong, L., et al. (2008). Differentiation of the pericyte in wound healing: The precursor, the process, and the role of the vascular endothelial cell. Wound Repair and Regeneration, 16, 346–355.

    Article  PubMed  Google Scholar 

  • Yamanishi, H., Fujiwara, S., & Soma, T. (2012). Perivascular localization of dermal stem cells in human scalp. Experimental Dermatology, 21, 78–80.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki, T., et al. (2017). Tissue myeloid progenitors differentiate into pericytes through TGF-beta Signaling in developing skin vasculature. Cell Reports, 18, 2991–3004.

    Article  CAS  PubMed  Google Scholar 

  • Ydens, E., et al. (2012). Acute injury in the peripheral nervous system triggers an alternative macrophage response. Journal of Neuroinflammation, 9, 176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yona, S., et al. (2013). Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity, 38, 79–91.

    Article  CAS  PubMed  Google Scholar 

  • Young, B., Woodford, P., & O’Dowd, G. (2014). Wheater’s functional histology: A text and colour atlas (6th ed.). London: Elsevier Churchill Livingstone.

    Google Scholar 

  • Yu, B., Alboslemy, T., Safadi, F., & Kim, M. H. (2018). Glycoprotein nonmelanoma clone B regulates the crosstalk between macrophages and mesenchymal stem cells toward wound repair. Journal of Investigative Dermatology, 138, 219–227.

    Article  CAS  PubMed  Google Scholar 

  • Zajac, E., et al. (2013). Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood, 122, 4054–4067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman, A., Bai, L., & Ginty, D. D. (2014). The gentle touch receptors of mammalian skin. Science, 346, 950–954

    Google Scholar 

  • Ziyad, S., & Iruela-Arispe, M. L. (2011). Molecular mechanisms of tumor angiogenesis. Genes & Cancer, 2, 1085–1096.

    Article  CAS  Google Scholar 

  • Zochodne, D. W. (2012). The challenges and beauty of peripheral nerve regrowth. Journal of the Peripheral Nervous System, 17, 1–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Writing of this chapter was supported by grants from Instituto de Salud Carlos III (PI13/02172; PI16/01430; AC17/00012), co-funded by the European Union (ERDF/ESF, “Investing in your future”; and Eracosysmed/H2020 Grant Agreement No. 643271). HI received a studentship from the Department of Education, University and Research of the Basque Government (PRE2013-1-1068).

A tribute is given to Dr. Shunichi Morikawa. From the right to the left, the two co-first authors of this chapter, Dr. Haizea Iribar and Dr. Shunichi Morikawa, and his wife, celebrating Japanese culture

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ander Izeta .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to the memory of the late Dr. Shunichi Morikawa, an original thinker and pioneering scientist who largely increased our current understanding of the role of pericytes in cutaneous wound healing.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morikawa, S., Iribar, H., Gutiérrez-Rivera, A., Ezaki, T., Izeta, A. (2019). Pericytes in Cutaneous Wound Healing. In: Birbrair, A. (eds) Pericyte Biology in Disease. Advances in Experimental Medicine and Biology, vol 1147. Springer, Cham. https://doi.org/10.1007/978-3-030-16908-4_1

Download citation

Publish with us

Policies and ethics