Skip to main content

Dropout for Recurrent Neural Networks

  • Conference paper
  • First Online:
Recent Advances in Big Data and Deep Learning (INNSBDDL 2019)

Part of the book series: Proceedings of the International Neural Networks Society ((INNS,volume 1))

Included in the following conference series:

Abstract

Neural networks are computational structures which can be trained to perform tasks based on training examples or patterns. Recurrent neural networks are a type of network designed to process time-series data. Dropout is a neural network regularization technique. The literature advises that Dropout should not be directly applied to recurrent neural networks as its effects are too dramatic when applied recurrently. This direct approach is described as naive. Instead, there are two specialised recurrent neural network Dropout algorithms proposed by different authors. However, these specialised Dropout algorithms have not been tested against one another and the naive algorithm under identical experimental conditions. This paper compares all of these algorithms and finds that the naive approach performed as well as or better than the specialised Dropout algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayer, J., Osendorfer, C., Korhammer, D., Chen, N., Urban, S., van der Smagt, P.: On fast dropout and its applicability to recurrent networks. arXiv preprint arXiv:1311.0701 (2013)

  2. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1019–1027 (2016)

    Google Scholar 

  3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  4. Martens, J., Sutskever, I.: Learning recurrent neural networks with hessian-free optimization. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1033–1040. Citeseer (2011)

    Google Scholar 

  5. Pachitariu, M., Sahani, M.: Regularization and nonlinearities for neural language models: when are they needed? arXiv preprint arXiv:1301.5650 (2013)

  6. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  7. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Tieleman, T., Hinton, G.: Lecture 6.5—RmsProp: divide the gradient by a running average of its recent magnitude. In: COURSERA: Neural Networks for Machine Learning (2012)

    Google Scholar 

  9. Watt, N., du Plessis, M.C.: Dropout algorithms for recurrent neural networks. In: SAICSIT (2018)

    Google Scholar 

  10. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Watt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Watt, N., du Plessis, M.C. (2020). Dropout for Recurrent Neural Networks. In: Oneto, L., Navarin, N., Sperduti, A., Anguita, D. (eds) Recent Advances in Big Data and Deep Learning. INNSBDDL 2019. Proceedings of the International Neural Networks Society, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-16841-4_5

Download citation

Publish with us

Policies and ethics