Skip to main content

Mise en abyme with Artificial Intelligence: How to Predict the Accuracy of NN, Applied to Hyper-parameter Tuning

  • Conference paper
  • First Online:
Recent Advances in Big Data and Deep Learning (INNSBDDL 2019)

Part of the book series: Proceedings of the International Neural Networks Society ((INNS,volume 1))

Included in the following conference series:

Abstract

In the context of deep learning, the costliest phase from a computational point of view is the full training of the learning algorithm. However, this process is to be used a significant number of times during the design of a new artificial neural network, leading therefore to extremely expensive operations. Here, we propose a low-cost strategy to predict the accuracy of the algorithm, based only on its initial behaviour. To do so, we train the network of interest up to convergence several times, modifying its characteristics at each training. The initial and final accuracies observed during this beforehand process are stored in a database. We then make use of both curve fitting and Support Vector Machines techniques, the latter being trained on the created database, to predict the accuracy of the network, given its accuracy on the primary iterations of its learning. This approach can be of particular interest when the space of the characteristics of the network is notably large or when its full training is highly time-consuming. The results we obtained are promising and encouraged us to apply this strategy to a topical issue: hyper-parameter optimisation (HO). In particular, we focused on the HO of a convolutional neural network for the classification of the databases MNIST and CIFAR-10. By using our method of prediction, and an algorithm implemented by us for a probabilistic exploration of the hyper-parameter space, we were able to find the hyper-parameter settings corresponding to the optimal accuracies already known in literature, at a quite low-cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://yann.lecun.com/exdb/mnist/.

  2. 2.

    https://www.cs.toronto.edu/~kriz/cifar.html.

  3. 3.

    https://www.cineca.it/en/content/marconi.

References

  1. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: LION-5 2011. Extended version as UBC Technical report TR-2010-10 (2011)

    Google Scholar 

  2. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: NIPS (2011)

    Google Scholar 

  3. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  4. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Dixon, L.C.W., Szego, G.P. (eds.) Towards Global Optimization. volume 2, pp. 117–129. North Holland, New York (1978)

    Google Scholar 

  5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: International Conference on Learning Representations, Toulon, France, pp. 1–16 (2017)

    Google Scholar 

  7. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. In: International Conference on Learning Representations, pp. 1–18 (2017)

    Google Scholar 

  8. Zhong, Z., Yan, J., Wei, W., Shao, J., Liu, C.-L.: Practical block-wise neural network architecture generation. In: Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, USA (2018). arXiv preprint:1708.05552

  9. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. In: AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, pp. 2787–2794 (2018)

    Google Scholar 

  10. Chapelle, O., Vapnik, V.: Model selection for support vector machines. In: Advances in Neural Information Processing Systems, vol. 12 (1999)

    Google Scholar 

  11. Arlinghaus, S.L.: PHB Practical Handbook of Curve Fitting. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the CLASS Project (https://class-project.eu/), grant agreement n 780622.

This work was also partially supported by INdAM-GNCS (Research Projects 2018). Furthermore, it was partially supported by INdAM Doctoral Programme in Mathematics and/or Applications Cofunded by Marie Sklodowska-Curie Actions (INdAM-DP-COFUND-2015) whose grant number is 713485.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Galinier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franchini, G., Galinier, M., Verucchi, M. (2020). Mise en abyme with Artificial Intelligence: How to Predict the Accuracy of NN, Applied to Hyper-parameter Tuning. In: Oneto, L., Navarin, N., Sperduti, A., Anguita, D. (eds) Recent Advances in Big Data and Deep Learning. INNSBDDL 2019. Proceedings of the International Neural Networks Society, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-16841-4_30

Download citation

Publish with us

Policies and ethics