Skip to main content

Studies on Antioxidant Properties of Lichen Secondary Metabolites

  • Chapter
  • First Online:
Lichen Secondary Metabolites

Abstract

At present time, it is suspected that much used synthetic antioxidants have toxic and carcinogenic effects. Consequently, there is a growing interest towards finding new antioxidants of natural resources without any undesirable effect. Numerous in vitro studies on plants, micro- and macroalgae, macromycetes and lichens strongly support the fact that their constituents with antioxidant capacity are capable of exerting protective effects against oxidative stress in biological systems. Therefore, it is of prime importance to utilize natural antioxidants for their protective effect against oxidative stress and physiological dysfunctions. In the quest for novel natural antioxidant sources, our prime interest has focused on lichens. In recent time, numerous studies point to the importance of lichens in the neutralization of free radicals. Lichens are rich in secondary metabolites, primarily phenols, which are well known for its antioxidant properties. Because of that, the present chapter focuses on the role of lichens and their secondary metabolites in combating danger posed by overproduced free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Arshad MA, Ijaz S et al (2014) Review on methods used to determine antioxidant activity. Int J Multidiscip Res Dev 1:35–40

    Google Scholar 

  • Aligiannis N, Mitaku S, Tsitsa-Tsardis E et al (2003) Methanolic extract of Verbascum macrurum as a source of natural preservatives against oxidative rancidity. J Agric Food Chem 51:7308–7312

    Article  CAS  PubMed  Google Scholar 

  • Ananthi R, Tinabaye A, Selvaraj G (2015) Antioxidant study of usnic acid and its derivative usnic acid diacetate. Int J Adv Res Technol 4:356–366

    Google Scholar 

  • Aoussar N, Manzali R, Nattah I et al (2017) Chemical composition and antioxidant activity of two lichens species (Pseudevernia furfuracea L. and Evernia prunastri L.) collected from Morocco. JMES 8:1968–1976

    CAS  Google Scholar 

  • Apak R, Güçlü K, Özyürek M et al (2004) A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: the CUPRAC method. J Agric Food Chem 52:7970–7981

    Article  CAS  PubMed  Google Scholar 

  • Apak R, Gorinstein S, Bohm V et al (2013) Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure Appl Chem 85:957–998

    Article  CAS  Google Scholar 

  • Aslan A, Güllüce M, Sökmen M et al (2006) Antioxidant and antimicrobial properties of the lichens Cladonia foliacea, Dermatocarpon miniatum, Evernia divaricata, Evernia prunastri and Neofuscella pulla. Pharm Biol 44:247–252

    Article  Google Scholar 

  • Atalay F, Halici MB, Mavi AA et al (2011) Antioxidant phenolics from Lobaria pulmonaria (L.) Hoffm. and Usnea longissima Ach. Lichen species. Turk J Chem 35:647–661

    CAS  Google Scholar 

  • Barroso MF, De-los-Santos-Alvarez N, Delerue-Matos C et al (2011) Towards a reliable technology for antioxidant capacity and oxidative damage evaluation: electrochemical (bio) sensors. Biosens Bioelectron 30:1–12

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Verma N, Sonone A et al (2005) Antimicrobial activity of various solvent extracts of Lichen Usnea ghattensis. Agarkar Research Institute, Pune, India. Biotechnol Lett 27:991–995

    Article  CAS  PubMed  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Benzie IFF, Szeto YT (1999) Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 47:633–636

    Article  CAS  PubMed  Google Scholar 

  • Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai HD, Paude B, Lee HS et al (2008a) Antioxidant activity of Sanionia uncinata, a polar mass species from King George Island, Antarctica. Phytother Res 22:1635–1639

    Article  PubMed  Google Scholar 

  • Bhattarai HD, Paudel B, Hong SG et al (2008b) Thin layer chromatography analysis of antioxidant constituents of lichens from Antarctica. J Nat Med 62:481–484

    Article  PubMed  Google Scholar 

  • Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Food Sci Technol 30:609–615

    CAS  Google Scholar 

  • Bors W, Heller W, Michel C et al (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Brisdelli F, Perilli M, Sellitri D et al (2013) Cytotoxic activity and antioxidant capacity of purified lichen metabolites: an in vitro study. Phytother Res 27:431–437

    Article  CAS  PubMed  Google Scholar 

  • Buçukoglu TZ, Albayrak S, Halici MG et al (2013) Antimicrobial and antioxidant activities of extracts and lichen acids obtained from some Umbilicaria species from Central Anatolia, Turkey. J Food Process Preserv 37:1103–1110

    Article  CAS  Google Scholar 

  • Chevion S, Roberts MA, Chevion M (2000) The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic Biol Med 28:860–870

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MI, Ali S, Thadhani VM et al (2009) Natural novel antioxidants, Patent Application Number: 11/838567, Publication Date 02/19/2009

    Google Scholar 

  • Coruh N, Celep AGS, Ozgokçe F et al (2007) Antioxidant capacities of Gundelia tournefortii L. extracts and inhibition on glutathione-S-transferase activity. Food Chem 100(3):1249–1253

    Article  CAS  Google Scholar 

  • de Barros Alves GM, de Sousa Maia MB, de Souza FE et al (2014) Expectorant and antioxidant activities of purified fumarprotocetraric acid from Cladonia verticillaris lichen in mice. Pulm Pharmacol Ther 27:139–143

    Article  PubMed  CAS  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  CAS  PubMed  Google Scholar 

  • Es-Safi N, Khlifi S, Kerhoas L et al (2006) Iridoid glucosides from the aerial parts of Globularia alypum L. (Globulariaceae). Chem Pharm Bull 54:85–88

    Article  CAS  Google Scholar 

  • Folin O, Ciocalteu V (1927) Tyrosine and tryptophan determination in proteins. J Biol Chem 73:627–650

    CAS  Google Scholar 

  • Ganesan A, Thangapandian M, Ponnusamy P et al (2015) Antioxidant and antibacterial activity of Parmeliod lichens from Shevaroy hills of Eastern Ghats, India. Int J Pharm Tech Res 8:13–23

    CAS  Google Scholar 

  • Ganesan A, Thangapandian M, Ponnusamy P et al (2017) Antibacterial and antioxidant activity of Parmotrema reticulatum obtained from Eastern Ghats, Southern India. Biomed Res 28:1593–1597

    CAS  Google Scholar 

  • Gulcin I, Oktay M, Kufrevioglu OI et al (2002) Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79:325–329

    Article  PubMed  Google Scholar 

  • Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16(1):33–50

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo ME, Fernández E, Quilhot W et al (1994) Antioxidant activity of depsides and depsidones. Phytochemistry 37:1585–1587

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  PubMed  Google Scholar 

  • Huda-Faujan N, Noriham A, Norrakiah AS et al (2009) Antioxidant activity of plants methanolic extracts containing phenolic compounds. Afr J Biotechnol 8:484–489

    CAS  Google Scholar 

  • Jayaprakasha GK, Rao LJ (2000) Phenolic constituents from the lichen Parmotrema stuppeum (Nyl.) Hale and their antioxidant activity. Z Naturforsch 55:1018–1022

    Article  CAS  Google Scholar 

  • Kekuda PTR, Vinayaka KS, Kumar PSV et al (2009) Antioxidant and antibacterial activity of lichen extracts, honey and their combination. J Pharm Res 2:1875–1878

    Google Scholar 

  • Kekuda TRP, Raghavendra HL, Swathi D et al (2012) Antifungal and cytotoxic activity of Everniastrum cirrhatum (Fr.) Hale. Chiang Mai J Sci 39:76–83

    Google Scholar 

  • Kosanić M, Ranković B (2011a) Lichens as possible sources of antioxidants. Pak J Pharm Sci 24:165–170

    PubMed  Google Scholar 

  • Kosanić M, Ranković B (2011b) Antioxidant and antimicrobial properties of some lichens and their constituents. J Med Food 14:1624–1630

    Article  PubMed  CAS  Google Scholar 

  • Kosanić M, Ranković B, Vukojević J (2011) Antioxidant properties of some lichen species. J Food Sci Technol 48:584–590

    Article  PubMed  CAS  Google Scholar 

  • Kosanić M, Ranković B, Stanojković T (2012a) Antioxidant, antimicrobial, and anticancer activities of three Parmelia species. J Sci Food Agric 92:1909–1916

    Article  PubMed  CAS  Google Scholar 

  • Kosanić M, Ranković B, Stanojković T (2012b) Antioxidant, antimicrobial and anticancer activity of 3 Umbilicaria species. J Food Sci 77:T20–T25

    Article  PubMed  CAS  Google Scholar 

  • Kosanić M, Ranković B, Stanojković T (2013a) Investigation of selected Serbian lichens for antioxidant, antimicrobial and anticancer properties. J Anim Plant Sci 23:1628–1633

    Google Scholar 

  • Kosanić M, Manojlović N, Janković S et al (2013b) Evernia prunastri and Pseudevernia furfuracea lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem Toxicol 53:112–118

    Article  PubMed  CAS  Google Scholar 

  • Kosanić M, Šeklić D, Marković S et al (2014a) Evaluation of antioxidant, antimicrobial and anti cancer properties of selected lichens from Serbia. Dig J Nanomater Bios 9:273–287

    Google Scholar 

  • Kosanić M, Ranković B, Stanojković T et al (2014b) Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT Food Sci Technol 59:518–525

    Article  CAS  Google Scholar 

  • Kosanić M, Ranković B, Stanojković T et al (2014c) Biological activities and chemical composition of lichens from Serbia. EXCLI J 13:1226–1238

    PubMed  PubMed Central  Google Scholar 

  • Kosanić M, Ranković B, Stanojković T et al (2016) Lasallia pustulata lichen as possible natural antigenotoxic, antioxidant, antimicrobial and anticancer agent. Cytotechnology 68:999–1008

    Article  PubMed  CAS  Google Scholar 

  • Kosanić M, Ristić S, Stanojković T et al (2018) Extracts of five Cladonia lichens as sources of biologically active compounds. Farmacia 66:644–651

    Article  Google Scholar 

  • Kumar SVP, Kekuda TRP, Vinayaka KS et al (2010a) Studies on antibacterial, anthelmintic and antioxidant activities of a macrolichen Parmotrema pseudotinctorum (des. Abb.) Hale (parmeliaceae) from Bhadra wildlife sanctuary, Karnataka. Int J Pharm Tech Res 2:1207–1214

    CAS  Google Scholar 

  • Kumar SVP, Prashith Kekuda TR, Vinayaka KS et al (2010b) Anthelmintic and antioxidant efficacy of two macrolichens of Ramalinaceae. Phcog J 1:4

    Google Scholar 

  • Kumar J, Dhar P, Tayade AB et al (2014) Antioxidant capacities, phenolic profile and cytotoxic effects of saxicolous lichens from trans-himalayan cold desert of Ladakh. PLoS One 9(6):e98696. https://doi.org/10.1371/journal.pone.0098696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobo V, Patil A, Phatak A et al (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohézic-Le Dévéhat F, Tomasi S, Elix JA et al (2007) Stictic acid derivatives from the lichen Usnea articulate and their antioxidant activities. J Nat Prod 70:1218–1220

    Article  PubMed  CAS  Google Scholar 

  • Lopes TIB, Coelho RG, Yoshida NC et al (2008) Radical scavenging activity of orsellinates. Chem Pharm Bull 56:1551–1554

    Article  CAS  Google Scholar 

  • Lu Y, Foo LY (2001) Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem 75:197–202

    Article  CAS  Google Scholar 

  • Manojlovic NT, Vasiljevic PJ, Gritsanapan W et al (2010) Phytochemical and antioxidant studies of Laurera benguelensis growing in Thailand. Biol Res 43:169–176

    Article  CAS  PubMed  Google Scholar 

  • Manojlović N, Ranković B, Kosanić M et al (2012) Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine 19:1166–1172

    Article  PubMed  CAS  Google Scholar 

  • Mastan A, Sreedevi B, Kumari J et al (2014) Evaluation of the in vitro antioxidant and antibacterial activities of secondary metabolites produced from lichens. Asian J Pharm Clin Res 7:193–198

    Google Scholar 

  • Melo MG, dos Santos JP, Serafini MR et al (2011) Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol In Vitro 25:462–468

    Article  CAS  PubMed  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal. Polish J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Milardovic S, Ivekovic D, Grabaric BS (2006) A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 68:175–180

    Article  CAS  PubMed  Google Scholar 

  • Mitrović T, Stamenković S, Cvetković V et al (2011) Antioxidant, antimicrobial and antiproliferative of five lichen species. Int J Mol Sci 12:5428–5448

    Article  PubMed  PubMed Central  Google Scholar 

  • Moure A, Cruz JM, Franco D et al (2001) Natural antioxidants from residual sources. Food Chem 72:145–171

    Article  CAS  Google Scholar 

  • Naveena BM, Sen AR, Kingsly RP et al (2008) Antioxidant activity of pomegranate rind powder extract in cooked chicken patties. Int J Food Sci Technol 43(10):1807–1812

    Article  CAS  Google Scholar 

  • Odabasoglu F, Aslan A, Cakir A et al (2004) Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res 18:938–941

    Article  PubMed  Google Scholar 

  • Odabasoglu F, Aslan A, Cakir A et al (2005) Antioxidant activity, reducing power phenolic content of some lichen species. Fitoterapia 76:216–219

    Article  CAS  PubMed  Google Scholar 

  • Odabasoglu F, Cakir A, Suleyman H et al (2006) Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J Ethnopharmacol 103:59–65

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou P, Tzakou O, Vagias C et al (2007) Beta-orcinol metabolites from the lichen Hypotrachyna revolute. Molecules 12:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paudel B, Bhattarai HD, Lee JS et al (2008) Antioxidant activity of polar lichens from King George Island (Antarctica). Polar Biol 31:605–608

    Article  Google Scholar 

  • Pavithra GM, Vinayaka KS, Rakesh KN et al (2013) Antimicrobial and antioxidant activities of a macrolichen Usnea pictoides G. Awasthi (Parmeliaceae). J Appl Pharm Sci 3:154–160

    Google Scholar 

  • Pokorny J, Yanishlieva N, Gordan M (2001) Antioxidants in food: practical applications. Woodhead, Cambridge

    Book  Google Scholar 

  • Poornima G, Kekuda PTR, Vinayaka KS (2012) Antioxidant efficacy of Olea dioica Roxb (Oleaceae) leaves. Biomedicine 32:506–510

    Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra Shajyothi C, Padmalatha RS (2012) Antioxidant activity of Alstonia scholaris extracts containing flavonoids and phenolic compounds. Int J Pharm Pharm Sci 4:424–426

    Google Scholar 

  • Ranković B, Ranković D, Marić D (2010a) Antioxidant and antimicrobial activity of some lichen species. Microbiology 79:809–815

    Article  CAS  Google Scholar 

  • Ranković B, Ranković D, Kosanić M et al (2010b) Antioxidant and antimicrobial properties of the lichen Anaptychya ciliaris, Nephroma parile, Ochrolechia tartarea and Parmelia centrifuga. Cent Eur J Biol 5:649–655

    Google Scholar 

  • Ranković B, Kosanić M, Stanojković T (2011) Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complement Altern Med. https://doi.org/10.1186/1472-6882-11-97

  • Ranković B, Kosanić M, Stanojković T et al (2012) Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. Int J Mol Sci 13:14707–14722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranković B, Kosanić M, Stanojković T (2014a) Stereocaulon paschale Lichen as antioxidant, antimicrobial and anticancer agent. Farmacia 62:306–317

    Google Scholar 

  • Ranković B, Kosanić M, Manojlovic N et al (2014b) Chemical composition of Hypogymnia physodes lichen and biological activities of some its major metabolites. Med Chem Res 23:408–416

    Article  CAS  Google Scholar 

  • Rekha C, Poornima G, Manasa M et al (2012) Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits. Chem Sci Trans 1(2):303–310

    Article  CAS  Google Scholar 

  • Ristić S, Ranković B, Kosanić M et al (2016a) Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens. J Food Sci Technol 53:2804–2816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ristić S, Ranković B, Kosanić M et al (2016b) Biopharmaceutical potential of two Ramalina lichens and their metabolites. Curr Pharm Biotechnol 17:651–658

    Article  PubMed  CAS  Google Scholar 

  • Ross Watson R (2014) Polyphenols in plants: isolation, purification and extract preparation. Academic Press, San Diego, CA

    Google Scholar 

  • Russo A, Piovano M, Lombardo L et al (2008) Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci 83:468–474

    Article  CAS  PubMed  Google Scholar 

  • Sachindra NM, Airanthi MKWA, Hosokawa M et al (2010) Radical scavenging and singlet oxygen quenching activity of extracts from Indian seaweeds. J Food Sci Technol 47:94–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Moreno C, Larrauri JA, Saura-Calixto FA (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270–276

    Article  CAS  Google Scholar 

  • Sangameswaran B, Balakrishnan BR, Chumbhale D et al (2009) In vitro antioxidant activity of roots of Thespesia lampas dalz and gips. Pak J Pharm Sci 22:368–372

    CAS  PubMed  Google Scholar 

  • Sawa T, Nakao M, Akaike T et al (1999) Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables. J Agric Food Chem 47:397–402

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj G, Tinabaye A, Ananthi R (2015) In vitro antioxidant activities of salazinic acid and its derivative hexaacetyl salazinic acid. Int J Adv Res Technol 4:345–355

    Google Scholar 

  • Sharma BC, Kalikotay S (2012) Screening of antioxidant activity of lichens Parmotrema reticulatum and Usnea sp. from Darjeeling Hills, India. IOSR J Pharm 2:54–60

    Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Sisodia R, Geol M, Verma S et al (2013) Antibacterial and antioxidant activity of lichen species Ramalina roesleri. Nat Prod Res 27:2235–2239

    Article  CAS  PubMed  Google Scholar 

  • Souri E, Amin G, Farsam H et al (2008) Screening of thirteen medicinal plant extracts for antioxidant activity. Iran J Pharm Res 7:149–154

    Google Scholar 

  • Squadriato GL, Pelor WA (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 25(4–5):392–403

    Article  Google Scholar 

  • Stanly C, Ali DMH, Keng CL et al (2011) Comparative evaluation of antioxidant activity and total phenolic content of selected lichen species from Malaysia. J Pharm Res 4:2824–2827

    CAS  Google Scholar 

  • Stepanenko LS, Krivoshchekova OE, Skirina IF (2002) Functions of phenolic secondary metabolites in lichens from Far East Russia. Symbiosis 32:119–131

    CAS  Google Scholar 

  • Thadhani VM, Choudhary MI, Ali S et al (2011) Antioxidant activity of some lichen metabolites. Nat Prod Res 25:1827–1837

    Article  CAS  PubMed  Google Scholar 

  • Tilak JC, Adhikari S, Devasagayam TPA (2004) Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin. Redox Rep 9:220–227

    Article  CAS  Google Scholar 

  • Tomović J, Kosanić M, Ristić S et al (2017) Chemical composition and bioactive properties of the lichen, Pleurosticta acetabulum. Trop J Pharm Res 16:2977–2984

    Article  CAS  Google Scholar 

  • Tougas T, Jannetti J, Collier W (1985) Theoretical and experimental response of a biamperometric detector for flow injection analysis. Anal Chem 57:1377–1381

    Article  CAS  Google Scholar 

  • Vagi E, Rapavi E, Hadolin M et al (2005) Phenolic and triterpenoid antioxidants from Origanum majorana L. herb and extracts obtained with different solvents. J Agric Food Chem 53:17–21

    Article  CAS  PubMed  Google Scholar 

  • Verma N, Behera BC, Sonone A et al (2008a) Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in vitro. Afr J Biochem Res 2:225–231

    Google Scholar 

  • Verma N, Behera BC, Sonone A et al (2008b) Cell aggregates derived from natural lichen thallus fragments: antioxidant activities of lichen metabolites developed in vitro. Nat Prod Commun 3:1911–1918

    CAS  Google Scholar 

  • Verma N, Behera BC, Joshi A (2012) Studies on nutritional requirement for the culture of lichen Ramalina nervulosa and Ramalina pacifica to enhance the production of antioxidant metabolites. Folia Microbiol 57(2):107–114

    Article  CAS  Google Scholar 

  • Vivek MN, Kambar Y, Manasa M et al (2014) Radical scavenging and antibacterial activity of three Parmotrema species from Western Ghats of Karnataka, India. J Appl Pharm Sci 4:086–091

    Google Scholar 

  • Yamamoto Y, Miura Y, Higuchi M et al (1993) Using lichen tissue cultures in modern biology. Bryologists 96:384–393

    Article  Google Scholar 

  • Yanishlieva NV, Marinova EM, Gordon HM et al (1999) Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem 64:59–66

    Article  CAS  Google Scholar 

  • Young I, Woodside J (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yucel O, Odabasoglu F, Gulluce M et al (2007) Antioxidant and antimicrobial properties of a lichen species, Cladonia rangiformis growing in Turkey. Turk J Pharm Sci 4:101–109

    CAS  Google Scholar 

  • Zhang XY, Chen da C, Mei Hong Xiu MH et al (2009) The novel oxidative stress marker thioredoxin is increased in first-episode schizophrenic patients. Schizophr Res 113(2–3):151–157

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kosanić, M., Ranković, B. (2019). Studies on Antioxidant Properties of Lichen Secondary Metabolites. In: Ranković, B. (eds) Lichen Secondary Metabolites. Springer, Cham. https://doi.org/10.1007/978-3-030-16814-8_4

Download citation

Publish with us

Policies and ethics