Skip to main content

The Ecology of Methanogenic Archaea in a Nutrient-Impacted Wetland

  • Chapter
  • First Online:
The Structure and Function of Aquatic Microbial Communities

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 7))

  • 862 Accesses

Abstract

Wetlands are the largest natural sources of methane, and many wetlands are subject to nutrient enrichment due to runoff from adjacent agricultural and urban lands. Methanogenic archaea are responsible for much of the methane produced in terrestrial wetlands and participate in a range of additional activities including nitrogen fixation and mercury methylation. Nutrient enrichment may impact the dominant metabolic groups of methanogens, such that the fundamental activities of methanogens may be associated with the nutrient status of the wetland. Regions of the Everglades, a large marsh in the southern part of Florida, in the USA, are subject to nutrient enrichment and are characterized by a gradient in available phosphorus, organic carbon, and sulfate concentrations. This marsh provides an outstanding system in which to study the impacts of nutrient enrichment on the distribution and activities of methanogens. Competition for acetate with sulfate-reducing prokaryotes plays an important role in structuring methanogenic consortia in nutrient-impacted regions, and the potentials for methanogenic nitrogen fixation and mercury methylation differ along the nutrient gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JAR (1964) The structure and development of peat swamps of Sarawak and Brunei. J Trop Geogr 18:7–16

    Google Scholar 

  • Bae HS, Holmes ME, Chanton JP et al (2015) Distribution, activities, and interactions of methanogens and sulfate-reducing prokaryotes in the Florida Everglades. Appl Environ Microbiol 81:7431–7442

    Article  CAS  Google Scholar 

  • Bae HS, Morrison E, Chanton JP, Ogram A (2018) Methanogens are major contributors to nitrogen fixation in soils of the Florida Everglades. Appl Environ Microbiol:e02222-17

    Google Scholar 

  • Bae HS, Dierberg FE, Ogram A (2014) Syntrophs dominate sequences associated with the mercury methylation-related gene hgcA in the water conservation areas of the Florida Everglades. Appl Env Microbiol 20:6517–6526

    Article  Google Scholar 

  • Belay N, Sparling R, Daniels L (1984) Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312:286–288

    Article  CAS  Google Scholar 

  • Borrel G, O’Toole PW, Harris HM et al (2013) Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 5:1769–1780

    Article  CAS  Google Scholar 

  • Castro HF, Newman S, Reddy KR, Ogram A (2005) Distribution and stability of sulfate reducing prokaryotic and hydrogenotrophic methanogenic assemblages in nutrient-impacted regions of the Florida Everglades. Appl Environ Microbiol 71:2695–2704

    Article  CAS  Google Scholar 

  • Castro HF, Ogram A, Reddy KR (2004) Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida Everglades. Appl Environ Microbiol 70:6559–6568

    Article  CAS  Google Scholar 

  • Castro HF, Williams N, Ogram A (2000) Phylogeny of sulfate reducing bacteria. FEMS Microbiol Ecol 31:1–9

    CAS  PubMed  Google Scholar 

  • Chauhan A, Ogram A (2006) Stable isotope probing of fatty acid oxidizing guilds in the Florida Everglades. Appl Environ Microbiol 72:2400–2406

    Article  CAS  Google Scholar 

  • Chauhan A, Ogram A, Reddy KR (2004) Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades. Appl Environ Microbiol 70:3475–3484

    Article  CAS  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  CAS  Google Scholar 

  • Corstanje R, Reddy KR, Prenger J et al (2007) Soil microbial eco-physiological response to nutrient enrichment in a sub-tropical wetland. Ecol Indic 7:277–289

    Article  Google Scholar 

  • de Bok FA, Stams A, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67:1800–1804

    Article  Google Scholar 

  • Frederick P, Jayasena N (2011) Altered pairing behavior and reproductive success in white ibises exposed to environmentally relevant concentrations of methylmercury. Proc R Soc B 278:1851–1857

    Article  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic latch on a global carbon store. Nature 409:149

    Article  CAS  Google Scholar 

  • Gilmour CC, Podar M, Bullock AL et al (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820

    Article  CAS  Google Scholar 

  • Gilmour CC, Riedel GS, Ederington MC et al (1998) Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry 40:327–345

    Article  CAS  Google Scholar 

  • Hamelin S, Amyot M, Barkay T et al (2011) Methanogens: principal methylators of mercury in lake periphyton. Environ Sci Technol 45:7693–7700

    Article  CAS  Google Scholar 

  • Harmsen HJM, van Kuijk BLM, Plugge CM et al (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate reducing bacterium. Int J Syst Bacteriol 48:1383–1387

    Article  CAS  Google Scholar 

  • Holmes BE, Chanton J, Bae HS, Ogram A (2014) Effect of nutrient enrichment on δ13C and the methane production pathway in the Florida Everglades. J Geophys Res 118:1–11

    Google Scholar 

  • Inglett P, Rivera-Monroy V, Wozniak J (2011) Biogeochemistry of nitrogen across the Everglades landscape. Crit Rev Env Sci Technol 41:187–216

    Article  CAS  Google Scholar 

  • Liu Y, Balkwill D, Aldrich H et al (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556

    Article  CAS  Google Scholar 

  • Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol 43:1373–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J et al (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  CAS  Google Scholar 

  • Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37:384–406

    Article  CAS  Google Scholar 

  • Morrison E, Newman S, Bae HS et al (2016) Microbial genetic and enzymatic responses to an anthropogenic phosphorus gradient within a subtropical peatland. Geoderma 268:119–127

    Article  CAS  Google Scholar 

  • Murray PA, Zinder SH (1984) Nitrogen fixation by a methanogenic archaebacterium. Nature 312:284–286

    Article  CAS  Google Scholar 

  • Nüsslein B, Eckert W, Conrad R (2003) Stable isotope biogeochemistry of methane formation in profundal sediments of Lake Kinneret (Israel). Limnol Oceanogr 48:1439–1446

    Article  Google Scholar 

  • Nüsslein B, Chin KJ, Eckert W, Conrad R (2001) Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of Lake Kinneret (Israel). Environ Microbiol 3:460–470

    Article  Google Scholar 

  • Parks JM, Johs A, Podar M et al (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335

    Article  CAS  Google Scholar 

  • Penton CR, Newman S (2007) Enzyme activity responses to nutrient loading in subtropical wetlands. Biogeochemistry 84:83–98

    Article  CAS  Google Scholar 

  • Prakash O, Pandey PK, Kulkami GJ et al (2014) Technicalities and glitches of terminal restriction fragment length polymorphism (T-RFLP). Indian J Microbiol 54:255–261

    Article  CAS  Google Scholar 

  • Robinson J, Tiedje J (1984) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch Microbiol 137:26–32

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schönheit P, Kristjansson JK, Thauer RK (1982) Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Arch Microbiol 132:285–288

    Article  Google Scholar 

  • Uz I, Ogram A (2006) Cellulolytic and fermentative guilds in the Florida Everglades. FEMS Microbiol Ecol 57:396–408

    Article  CAS  Google Scholar 

  • van Amstel A (2012) Methane. A review. Integr Environ Sci 9:5–30

    Article  Google Scholar 

  • Voolapalli RK, Stuckey DC (1999) Relative importance of trophic group concentrations during anaerobic degradation of volatile fatty acids. Appl Environ Microbiol 65:5009–5016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallrabenstein C, Hauschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov., a new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352

    Article  CAS  Google Scholar 

  • White JR, Reddy KR (2003) Nitrification and denitrification rates of Everglades wetland soils along a phosphorus-impacted gradient. J Environ Qual 32:2436–2443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Ogram .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

Andrew Ogram declares that he has no conflicts of interest. Hee-Sung Bae declares that he/she has no conflicts of interest. Ashvini Chauhan declares that he/she has no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogram, A., Bae, HS., Chauhan, A. (2019). The Ecology of Methanogenic Archaea in a Nutrient-Impacted Wetland. In: Hurst, C. (eds) The Structure and Function of Aquatic Microbial Communities. Advances in Environmental Microbiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-16775-2_6

Download citation

Publish with us

Policies and ethics