Skip to main content

Bridge Equivalent Circuits for Microwave Filters and Fano Resonance

  • Conference paper
  • First Online:
Book cover Advances in Information and Communication Technologies (UKRMICO 2018)

Abstract

The analytical dependences for analysis of microwave structures based on different types of resonators located in parallel communication channels are obtained. These dependencies are suitable for describing many known oscillatory processes. A comprehensive analysis of electrodynamic metamaterial cells is carried out on the basis of these equations. It was shown that obtained analytical expressions describe the characteristics of bridge 4-poles on lumped elements. Such 4-pole networks have an extremely high group delay time and complete signal rejection possibility. These properties characterize metamaterials and some processes described by the Fano resonance. By contrast 4-poles based on coupled resonators, bridge 4-pole are built on the basis of two independent oscillations in different branches. The purpose of this chapter is new models of bridge 4-poles with different Q-factors of resonators. These models simplify modeling of attenuation poles in microwave filters and processes described by Fano resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ilchenko, M.E., Zhivkov, A.P.: UHF devices based on several dielectric-cavity mode types. Radioelectron. Commun. Syst. 32(5), 56–59 (1989)

    Google Scholar 

  2. Ilchenko, M.E., Zhivkov, A.P., Orlov, A.T.: Filters based on resonators with modes similar in frequency as cells of metamaterials. Naukovi Visti NTUU “KPI” 104(1), 7–14 (2016). (in Russian)

    Google Scholar 

  3. Ilchenko, M.E., Zhivkov, A.P.: Microwave filters based on the structures with resonators in parallel channels as metamaterial cells. KPI Sci. News 6, 7–21 (2018)

    Google Scholar 

  4. Ilchenko, M.E., Zhivkov, A.P.: Properties of metamaterials in oscillation terminology. In: 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics, UkrMiCo 2016, Ukraine, 11–15 September, pp. 170–173 (2017)

    Google Scholar 

  5. Sommerfeld, A.: Atomic Structure and Spectral Lines, vol. 1. State Publishing House of Technical Literature, Moscow (1956)

    Google Scholar 

  6. Ilchenko, M.E., Zhivkov, A.P.: Two-channel microwave bandpass filter. Elektronnaya Tekhnika Elektronika SVC (9), 12–14 (1989)

    Google Scholar 

  7. Guillemin, E.A.: Synthesis of Passive Networks: Theory and Methods Appropriate to the Realization and Approximation Problems. Wiley, Hoboken (1957)

    Google Scholar 

  8. Bosyy, N.D.: Electric Filters. Gos. izd-vo tekhn. lit-ry USSR, Kyiv (1959)

    Google Scholar 

  9. Kamenetskii, E., Sadreev, A., Miroshnichenko, A.: Fano Resonances in Optics and Microwaves. Springer, Heidelberg (2018)

    Book  Google Scholar 

  10. Tribelsky, M.I.: Fano resonances in quantum and classical mechanics. MIREA (2012)

    Google Scholar 

  11. Baskakov, S.I.: Radio circuits and signals. M. Higher School (1998)

    Google Scholar 

  12. Temesh, T., Mitr, S.: The modern theory of filters and their design, p. 560 (1977)

    Google Scholar 

  13. Bessonov, L.A.: Theoretical Foundations of Electrical Engineering. Electrical Circuits, 10th edn. Gardariki, Moscow (2002)

    Google Scholar 

  14. Karni, S.: Network Theory: Analysis and Synthesis. Allyn and Bacon, Boston (1966)

    Google Scholar 

  15. Ulakhovich, D.A.: Fundamentals of the theory of linear electrical circuits, Petersburg, p. 816 (2009)

    Google Scholar 

  16. Siebert, W.M.: Circuits, Signals, and Systems. The MIT Press, Cambridge (1985)

    Google Scholar 

  17. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  Google Scholar 

  18. Fang, N., et al.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  Google Scholar 

  19. Smith, D.R., et al.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  Google Scholar 

  20. Gorodetsky, M.L.: Giant-quality optical microresonators, p. 415. Fizmatlit (2011)

    Google Scholar 

  21. Rabinovich, M.I., Trubetsov, D.I.: Introduction to the theory of oscillations and waves, p. 560 (2000)

    Google Scholar 

  22. Crawford Jr., F.S.: Waves (Berkeley Physics Course, Volume 3). Mcgraw Hill College, New York City (1968)

    Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: Mechanics: Volume 1 (Course of Theoretical Physics S). Butterworth-Heinemann, Oxford (1976)

    Google Scholar 

  24. Lazarev, L.A.: Panels with low-Q resonators that have a theoretically infinite soundproofing ability at one frequency. Acoust. J. 61(4), 522–528 (2015)

    MathSciNet  Google Scholar 

  25. Baena, J.D., et al.: Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005)

    Article  Google Scholar 

  26. Gay-Balmaz, P., Martin, O.J.F.: Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys. 92(5), 2929–2936 (2002)

    Article  Google Scholar 

  27. Baena, D., Bonache, J.: Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53, 1451–1461 (2005)

    Article  Google Scholar 

  28. Capolino, F.: Metamaterials Handbook. Taylor & Francis Group/CRC Press, Boca Raton/Milton Park (2009). Vols. 1, 2

    Google Scholar 

  29. Garrido, L.: Classical analog of electromagnetically induced transparency. Am. J. Phys. 70, 37 (2002)

    Article  Google Scholar 

  30. Luo, S.: A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes ieee trans. Microw. Theory Tech. 58, 3427–3432 (2010)

    Google Scholar 

  31. Lin, L., Wu, B.: A novel quad-mode resonator and its application to dual-band bandpass filters. Prog. Electromagn. Res. 43, 95–104 (2013)

    Article  Google Scholar 

  32. Ferran, M., Zhu, L.: Balanced Microwave Filters, p. 688. Wiley-IEEE Press, Hoboken (2018)

    Google Scholar 

  33. Helszajn, J.: Passive and Active Microwave Circuit, p. 274. Wiley, Hoboken (1978)

    Google Scholar 

  34. Ilchenko, M.E., Zhivkov, A.P.: Areas of degeneration oscillations in metamaterial cells. In: 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics, UkrMiCo, pp. 1–4 (2017)

    Google Scholar 

  35. USSR Inventor’s Certificate 1529321

    Google Scholar 

  36. Ilchenko, M.: Selected Works. Naukova Dumka, p. 72 (2011)

    Google Scholar 

  37. Zakharov, A., Ilchenko, M.E.: Planar three-resonator bandpass filters with cross coupling. J. Commun. Technol. Electron. 62, 185–193 (2017)

    Article  Google Scholar 

  38. Zakharov, A., Ilchenko, M.E.: Thin bandpass filters containing sections of symmetric strip transmission line. J. Commun. Technol. Electron. 58, 728–736 (2013)

    Article  Google Scholar 

  39. Zakharov, A., Ilchenko, M.: Two types of trisection bandpass filters with mixed cross-coupling. IEEE Microw. Wirel. Compon. Lett. 28, 585–587 (2018)

    Article  Google Scholar 

  40. Mandelstam, L.I.: Lectures on the theory of oscillations. Science (1972)

    Google Scholar 

  41. Pippard, A.B.: The Physics of Vibration, p. 656. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  42. von Neumann, J., Wigner, E.: Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z. 30, 467–470 (1929)

    MATH  Google Scholar 

  43. Wikipedia. https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B7%D0%B8%D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D1%83%D1%80%D0%BE%D0%B2%D0%BD%D0%B5%D0%B9. Accessed 19 Jan 2019

  44. Louisell, H.: Coupled mode and parametric electronics (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Ilchenko or A. Zhivkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ilchenko, M., Zhivkov, A. (2019). Bridge Equivalent Circuits for Microwave Filters and Fano Resonance. In: Ilchenko, M., Uryvsky, L., Globa, L. (eds) Advances in Information and Communication Technologies. UKRMICO 2018. Lecture Notes in Electrical Engineering, vol 560. Springer, Cham. https://doi.org/10.1007/978-3-030-16770-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16770-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16769-1

  • Online ISBN: 978-3-030-16770-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics