Skip to main content

Endophytic Microbial Communities of Boswellia

  • Chapter
  • First Online:
Biology of Genus Boswellia

Abstract

Endophytes (bacteria or fungi) are a major class of plant symbionts that live within their hosts. These endosymbionts provide a diverse hub of bioactive secondary metabolites, phytohormones, extracellular enzymes and essential nutrients. In return, the host provides a protective habitat and access to the nutrients needed to reproduce and grow during the endophyte’s life (through the seeds, roots, stems and leaves). Similar to other plants, the Boswellia species have also been found to harbour endophytic microbes. Various species such as endophytic fungi (Chaetomium sp., Preussia sp., Penicillium, Thielavia, Phoma sp., Aureobasidium sp., Dothideomycetes sp., Sordariomycetes sp. and Fusarium proliferatum) and bacteria (Bacillus, Rhizobium and Paenibacillus) have been reported to date. Some of these species have been reported to produce auxin, exozymes and secondary enzyme inhibitory metabolites. There are only a few studies on these subjects, and they are primarily on B. sacra, and thus further study on other economically important species such as B. papyrifera and B. serrata is needed. This future work will help researchers to not only understand the role of associated microorganisms but also understand the tree of life and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, S., Charles, T., & Glick, B. (2012). Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. Journal of Applied Microbiology, 113(5), 1139–1144.

    Article  CAS  PubMed  Google Scholar 

  • Al-Hosni, K., Shahzad, R., Latif Khan, A., Muhammad Imran, Q., Al Harrasi, A., Al Rawahi, A., ... & Lee, I. J. (2018). Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. Journal of Plant Interactions, 13(1), 112–118.

    Google Scholar 

  • Arenal, F., Platas, G., & Pelaez, F. (2007). A new endophytic species of Preussia (Sporormiaceae) inferred from morphological observations and molecular phylogenetic analysis. Fungal Diversity, 25, 1–17.

    Google Scholar 

  • Arnold, A. E., Henk, D. A., Eells, R. L., Lutzoni, F., & Vilgalys, R. (2007). Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia, 99(2), 185–206.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, A. E., & Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology, 88(3), 541–549.

    Article  PubMed  Google Scholar 

  • Bayman, P., & Otero, J. T. (2006). Microbial endophytes of orchid roots. In Microbial root endophytes (pp. 153–177). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Bilal, S., Shahzad, R., Khan, A. L., Kang, S.-M., Imran, Q. M., Al-Harrasi, A., … Lee, I.-J. (2018). Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Frontiers in plant science, 9, 1273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bömke, C., & Tudzynski, B. (2009). Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry, 70(15–16), 1876–1893.

    Article  PubMed  CAS  Google Scholar 

  • Clay, K. (1990). Fungal endophytes of grasses. Annual Review of Ecology and Systematics, 21(1), 275–297.

    Article  Google Scholar 

  • Corrêa, R. C. G., Rhoden, S. A., Mota, T. R., Azevedo, J. L., Pamphile, J. A., de Souza, C. G. M., … Peralta, R. M. (2014). Endophytic fungi: Expanding the arsenal of industrial enzyme producers. Journal of Industrial Microbiology & Biotechnology, 41(10), 1467–1478.

    Article  CAS  Google Scholar 

  • De Bary, A. (1879). The phenomenon of symbiosis. Ver-lag Von Karl J. Trubner, Strasbourg, Germany.

    Google Scholar 

  • De Battista, J., Bacon, C., Severson, R., Plattner, R., & Bouton, J. (1990). Indole acetic acid production by the fungal endophyte of tall fescue. Agronomy Journal, 82(5), 878–880.

    Article  Google Scholar 

  • Deshpande, V., Wang, Q., Greenfield, P., Charleston, M., Porras-Alfaro, A., Kuske, C. R., … Tran-Dinh, N. (2016). Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia, 108(1), 1–5.

    Article  PubMed  Google Scholar 

  • Dew, R., Boissonneault, G., Gay, N., Boling, J., Cross, R., & Cohen, D. (1990). The effect of the endophyte (Acremonium coenophialum) and associated toxin (s) of tall fescue on serum titer response to immunization and spleen cell flow cytometry analysis and response to mitogens. Veterinary Immunology and Immunopathology, 26(3), 285–295.

    Article  CAS  PubMed  Google Scholar 

  • Eberl, F., Uhe, C., & Unsicker, S. B. (2019). “Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions.” Fungal Ecology 38, 104–112.

    Google Scholar 

  • El-Nagerabi, S. A., Elshafie, A. E., & Alkhanjari, S. S. (2014). Endophytic fungi associated with endogenous Boswellia sacra. Biodiversitas Journal of Biological Diversity, 15(1), 24–30.

    Article  Google Scholar 

  • Eslamieh, J. (2010). Creating “Perfect” Boswellia. Cactus and Succulent Journal, 82(3), 126–131.

    Article  Google Scholar 

  • Esteves, A. C., Saraiva, M., Correia, A., & Alves, A. (2014). Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential. Canadian Journal of Microbiology, 60(5), 332–342.

    Article  CAS  PubMed  Google Scholar 

  • Fouda, A. H., Hassan, S. E.-D., Eid, A. M., & Ewais, E. E.-D. (2015). Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Annals of Agricultural Sciences, 60(1), 95–104.

    Article  Google Scholar 

  • Fröhlich, J., & Hyde, K. D. (1999). Biodiversity of palm fungi in the tropics: Are global fungal diversity estimates realistic? Biodiversity and Conservation, 8(7), 977–1004.

    Article  Google Scholar 

  • Fulthorpe, R., MacIvor, J. S., Jia, P., & Yasui, S.-L. E. (2018). The green roof microbiome: Improving plant survival for ecosystem service delivery. Frontiers in Ecology and Evolution, 6, 5.

    Article  Google Scholar 

  • Ganley, R. J., Brunsfeld, S. J., & Newcombe, G. (2004). A community of unknown, endophytic fungi in western white pine. Proceedings of the National Academy of Sciences, 101(27), 10107–10112.

    Article  CAS  Google Scholar 

  • García, A., Rhoden, S. A., Rubin Filho, C. J., Nakamura, C. V., & Pamphile, J. A. (2012). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biological Research, 45(2), 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Ghimire, S. R., Charlton, N. D., Bell, J. D., Krishnamurthy, Y. L., & Craven, K. D. (2011). Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Diversity, 47(1), 19–27.

    Article  Google Scholar 

  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 1.

    Article  CAS  Google Scholar 

  • Göhre, V., & Robatzek, S. (2008). Breaking the barriers: Microbial effector molecules subvert plant immunity. Annual Review of Phytopathology, 46, 189–215.

    Article  PubMed  CAS  Google Scholar 

  • Gunatilaka, A. L. (2006). Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. Journal of Natural Products, 69(3), 509–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halo, B. A., Khan, A. L., Waqas, M., Al-Harrasi, A., Hussain, J., Ali, L., … Lee, I.-J. (2015). Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. Journal of Plant Interactions, 10(1), 117–125.

    Article  CAS  Google Scholar 

  • Hawksworth, D. L., & Rossman, A. Y. (1997). Where are all the undescribed fungi? Phytopathology, 87(9), 888–891.

    Article  CAS  PubMed  Google Scholar 

  • Hibbett, D. S., Ohman, A., Glotzer, D., Nuhn, M., Kirk, P., & Nilsson, R. H. (2011). Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biology Reviews, 25(1), 38–47.

    Article  Google Scholar 

  • Higgins, K. L., Arnold, A. E., Miadlikowska, J., Sarvate, S. D., & Lutzoni, F. (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Molecular Phylogenetics and Evolution, 42(2), 543–555.

    Article  CAS  PubMed  Google Scholar 

  • Huang, W., Cai, Y., Surveswaran, S., Hyde, K., Corke, H., & Sun, M. (2009). Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal diversity, 36, 69–88.

    Google Scholar 

  • Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761–2764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A. L., Al-Harrasi, A., Al-Rawahi, A., Al-Farsi, Z., Al-Mamari, A., Waqas, M., … Shin, J.-H. (2016). Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One, 11(6), e0158207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan, A. L., Al-Harrasi, A., Shahzad, R., Imran, Q. M., Yun, B.-W., Kim, Y.-H., … Lee, I.-J. (2018). Regulation of endogenous phytohormones and essential metabolites in frankincense-producing Boswellia sacra under wounding stress. Acta Physiologiae Plantarum, 40(6), 113.

    Article  CAS  Google Scholar 

  • Khan, A. L., Asaf, S., Al-Rawahi, A., Lee, I.-J., & Al-Harrasi, A. (2017). Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree. PLoS One, 12(10), e0186939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan, A. L., Asaf, S., Khan, A. R., Al-Harrasi, A., Al-Rawahi, A., & Lee, I.-J. (2016). First draft genome sequencing of indole acetic acid producing and plant growth promoting fungus Preussia sp. BSL10. Journal of Biotechnology, 225, 44–45.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A. L., Halo, B. A., Elyassi, A., Ali, S., Al-Hosni, K., Hussain, J., … Lee, I.-J. (2016). Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electronic Journal of Biotechnology, 21, 58–64.

    Article  CAS  Google Scholar 

  • Khan, A. L., Hamayun, M., Kang, S.-M., Kim, Y.-H., Jung, H.-Y., Lee, J.-H., & Lee, I.-J. (2012). Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiology, 12(1), 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A. L., Hussain, J., Al-Harrasi, A., Al-Rawahi, A., & Lee, I.-J. (2015). Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology, 35(1), 62–74.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A. L., & Lee, I.-J. (2013). Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol, 13(1), 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A. L., Shin, J.-H., Jung, H.-Y., & Lee, I.-J. (2014). Regulations of capsaicin synthesis in Capsicum annuum L. by Penicillium resedanum LK6 during drought conditions. Scientia Horticulturae, 175, 167–173.

    Article  CAS  Google Scholar 

  • Khan, A. L., Waqas, M., Asaf, S., Kamran, M., Shahzad, R., Bilal, S., … Yun, B.-W. (2017). Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environmental and Experimental Botany, 133, 58–69.

    Article  CAS  Google Scholar 

  • Khan, A. L., Waqas, M., Hamayun, M., Al-Harrasi, A., Al-Rawahi, A., & Lee, I.-J. (2013). Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiology, 13(1), 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A. L., Waqas, M., Hussain, J., Al-Harrasi, A., Hamayun, M., & Lee, I.-J. (2015). Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. Journal of Hazardous Materials, 295, 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Khan, S. A., Hamayun, M., Yoon, H., Kim, H.-Y., Suh, S.-J., Hwang, S.-K., … Yoon, U.-H. (2008). Plant growth promotion and Penicillium citrinum. BMC Microbiology, 8(1), 231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kharwar, R. N., Mishra, A., Gond, S. K., Stierle, A., & Stierle, D. (2011). Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Natural Product Reports, 28(7), 1208–1228.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., Seo, C. W., Khan, A. L., Mun, B. G., Shahzad, R., Ko, J. W., ... & Lee, I. J. (2018). Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.). BMC plant biology, 18(1), 254–270.

    Google Scholar 

  • Krings, M., Taylor, T. N., Hass, H., Kerp, H., Dotzler, N., & Hermsen, E. J. (2007). Fungal endophytes in a 400-million-yr-old land plant: Infection pathways, spatial distribution, and host responses. New Phytologist, 174(3), 648–657.

    Article  PubMed  Google Scholar 

  • Kuldau, G., & Bacon, C. (2008). Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biological Control, 46(1), 57–71.

    Article  Google Scholar 

  • Kumar, D. S. S., & Hyde, K. D. (2004). Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal diversity, 17, 69–90.

    Google Scholar 

  • Kusari, S., Hertweck, C., & Spiteller, M. (2012). Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chemistry & Biology, 19(7), 792–798.

    Article  CAS  Google Scholar 

  • Kusari & Spiteller (2012). Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities U. Roessner (Ed.), Metabolomics, InTech, Rijeka, Croatia, pp. 241–266.

    Google Scholar 

  • Kusari, S., Zühlke, S., & Spiteller, M. (2009). An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. Journal of Natural Products, 72(1), 2–7.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, D. H. (1985). Symbiosis and mutualism: crisp concepts and soggy semantics. In: Boucher, D. H., (ed). The biology of mutualism. London, UK: Croom Helm Ltd, 29–39.

    Google Scholar 

  • Limtong, S., Kaewwichian, R., Yongmanitchai, W., & Kawasaki, H. (2014). Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World Journal of Microbiology and Biotechnology, 30(6), 1785–1796.

    Article  CAS  PubMed  Google Scholar 

  • Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X., & Yan, G. (2007). Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chemistry, 105(2), 548–554.

    Article  CAS  Google Scholar 

  • Lodge, D. J., Fisher, P., & Sutton, B. (1996). Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia, 88, 733–738.

    Article  Google Scholar 

  • Maheshwari, R. (2006). What is an endophytic fungus. Current Science, 90(10), 1309.

    Google Scholar 

  • Müller, C. B., & Krauss, J. (2005). Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology, 8(4), 450–456.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K.-H. (2008). Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and ITS implications for molecular species identification. Evolutionary Bioinformatics Online, 4, S653.

    Article  Google Scholar 

  • Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., … Ahmed, A.-H. (2018). Plant growth promoting Bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, 209, 21.

    Article  CAS  PubMed  Google Scholar 

  • Patel, J. B. (2001). 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis, 6(4), 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Petrini, O., Sieber, T. N., Toti, L., & Viret, O. (1993). Ecology, metabolite production, and substrate utilization in endophytic fungi. Natural Toxins, 1(3), 185–196.

    Article  Google Scholar 

  • Pirozynski, K., & Malloch, D. (1975). The origin of land plants: A matter of mycotrophism. Biosystems, 6(3), 153–164.

    Article  CAS  PubMed  Google Scholar 

  • Porras-Alfaro, A., Herrera, J., Sinsabaugh, R. L., Odenbach, K. J., Lowrey, T., & Natvig, D. O. (2008). Novel root fungal consortium associated with a dominant desert grass. Applied and Environmental Microbiology, 74(9), 2805–2813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: A primer for the natural products research community. Journal of Natural Products, 80(3), 756–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redecker, D., Kodner, R., & Graham, L. E. (2000). Glomalean fungi from the Ordovician. Science, 289(5486), 1920–1921.

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10(4), 372–379.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., … Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2(4), 404.

    Article  PubMed  Google Scholar 

  • Rosconi, F., Davyt, D., Martínez, V., Martínez, M., Abin-Carriquiry, J. A., Zane, H., … Fabiano, E. (2013). Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte H erbaspirillum seropedicae. Environmental Microbiology, 15(3), 916–927.

    Article  CAS  PubMed  Google Scholar 

  • Rowan, D. D., Latch, G. C., Bacon, C., & White, J. (1994). Utilization of endophyte-infected perennial ryegrasses for increased insect resistance. In Biotechnology of endophytic fungi of grasses (pp. 169–183). Boca Raton, London/New York: CRC Press.

    Google Scholar 

  • Rozpądek, P., Wężowicz, K., Nosek, M., Ważny, R., Tokarz, K., Lembicz, M., … Turnau, K. (2015). The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta, 242(4), 1025–1035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabat, A. J., Zanten, E., Akkerboom, V., Wisselink, G., Slochteren, K., Boer, R. F., … Kooistra-Smid, A. M. M. (2017). Targeted next-generation sequencing of the 16S-23S rRNA region for culture-independent bacterial identification-increased discrimination of closely related species. Scientific Reports, 7(1), 3434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saikkonen, K., Wäli, P., Helander, M., & Faeth, S. H. (2004). Evolution of endophyte–plant symbioses. Trends in Plant Science, 9(6), 275–280.

    Article  CAS  PubMed  Google Scholar 

  • Sakayaroj, J., Preedanon, S., Supaphon, O., Jones, E. G., & Phongpaichit, S. (2010). Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Diversity, 42(1), 27–45.

    Article  Google Scholar 

  • Santamaría, J., & Bayman, P. (2005). Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microbial Ecology, 50(1), 1–8.

    Article  PubMed  Google Scholar 

  • Sapp, J. (2004). The dynamics of symbiosis: An historical overview. Canadian Journal of Botany, 82(8), 1046–1056.

    Article  Google Scholar 

  • Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109(6), 661–686.

    Article  PubMed  Google Scholar 

  • Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., … Rahalkar, M. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 25(1), 28–36.

    Article  CAS  PubMed  Google Scholar 

  • Shahzad, R., Waqas, M., Khan, A. L., Asaf, S., Khan, M. A., Kang, S.-M., … Lee, I.-J. (2016). Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiology and Biochemistry, 106, 236–243.

    Article  CAS  PubMed  Google Scholar 

  • Soussi, A., Ferjani, R., Marasco, R., Guesmi, A., Cherif, H., Rolli, E., … Cherif, A. (2016). Plant-associated microbiomes in arid lands: Diversity, ecology and biotechnological potential. Plant and Soil, 405(1–2), 357–370.

    Article  CAS  Google Scholar 

  • Stierle, A., Strobel, G., & Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260(5105), 214–216.

    Article  CAS  PubMed  Google Scholar 

  • Stone, J. K., Bacon, C. W., & White, J. F. (2000). An overview of endophytic mibrobes: Endophytism defined. In: Microbial Endophytes. Bacon, C. W., & White, J. F. (eds.). Marcel Dekker, New York, p. 3–30.

    Google Scholar 

  • Strobel, G. A. (2003). Endophytes as sources of bioactive products. Microbes and Infection, 5(6), 535–544.

    Article  CAS  PubMed  Google Scholar 

  • Sun, P.-F., Fang, W.-T., Shin, L.-Y., Wei, J.-Y., Fu, S.-F., & Chou, J.-Y. (2014). Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One, 9(12), e114196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, Y., Wang, Q., Lu, X., Okane, I., & Kakishima, M. (2011). Endophytic fungi associated with two Suaeda species growing in alkaline soil in China. Mycosphere, 2(3), 239–248.

    Google Scholar 

  • Sunitha, V., Nirmala Devi, D., & Srinivas, C. (2013). Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World Journal of Agricultural Sciences, 9(1), 1–9.

    CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolera, M., Sass-Klaassen, U., Eshete, A., Bongers, F., & Sterck, F. J. (2013). Frankincense tree recruitment failed over the past half century. Forest Ecology and Management, 304, 65–72.

    Article  Google Scholar 

  • Tsavkelova, E., Oeser, B., Oren-Young, L., Israeli, M., Sasson, Y., Tudzynski, B., & Sharon, A. (2012). Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genetics and Biology, 49(1), 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296–310.

    Article  PubMed  Google Scholar 

  • Voříšková, J., & Baldrian, P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7(3), 477.

    Article  PubMed  CAS  Google Scholar 

  • Wennstrom, A. (1994). Endophyte: the misuse of an old term. Oikos, 71, 535–536.

    Article  Google Scholar 

  • White, J. F., Jr., & Torres, M. S. (2010). Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiologia Plantarum, 138(4), 440–446.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, T. M. (1993). Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms. Proceedings of the National Academy of Sciences, 90(8), 3134–3141.

    Article  CAS  Google Scholar 

  • Wingender, G., Stepniak, D., Krebs, P., Lin, L., McBride, S., Wei, B., … Kronenberg, M. (2012). Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology, 143(2), 418–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo, P., Lau, S., Teng, J., Tse, H., & Yuen, K.-Y. (2008). Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clinical Microbiology and Infection, 14(10), 908–934.

    Article  CAS  PubMed  Google Scholar 

  • Xu, M., Sheng, J., Chen, L., Men, Y., Gan, L., Guo, S., & Shen, L. (2014). Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World Journal of Microbiology and Biotechnology, 30(3), 835–845.

    Article  CAS  PubMed  Google Scholar 

  • Yan, J., Broughton, S., Yang, S., & Gange, A. (2015). Do endophytic fungi grow through their hosts systemically? Fungal Ecology, 13, 53–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Harrasi, A., Khan, A.L., Asaf, S., Al-Rawahi, A. (2019). Endophytic Microbial Communities of Boswellia. In: Biology of Genus Boswellia. Springer, Cham. https://doi.org/10.1007/978-3-030-16725-7_9

Download citation

Publish with us

Policies and ethics