Skip to main content

Microbial Communities Accompanying Cultivated and Wild Boswellia sacra Trees

  • Chapter
  • First Online:

Abstract

Boswellia sacra has been studied with attention to the rhizosphere microbiota in its root zone. The current chapter discusses the bacterial and fungal rhizosphere communities living with both cultivated and wild B. sacra tree populations studied using next-generation sequencing approaches. The results revealed that Ascomycota and Basidiomycota were abundant in wild and cultivated populations, respectively. Furthermore, Actinobacteria were abundant in wild populations, and Proteobacteria and Acidobacteria were abundant in cultivated populations. Higher quantities of glucosidases, cellulases and IAA were found in cultivated than in wild tree rhizospheres.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akinsanya, M. A., Goh, J. K., Lim, S. P., & Ting, A. S. Y. (2015). Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genom Data, 6, 159–163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38(1), 145–180.

    Article  PubMed  Google Scholar 

  • Berendsen, R. L., Pieterse, C. M., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.

    Article  CAS  PubMed  Google Scholar 

  • Coleman-Derr, D., Desgarennes, D., Fonseca-Garcia, C., Gross, S., Clingenpeel, S., Woyke, T., … Tringe, S. G. (2016). Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist, 209(2), 798–811.

    Article  CAS  PubMed  Google Scholar 

  • Debnath, R., Yadav, A., Gupta, V. K., Singh, B. P., Handique, P. J., & Saikia, R. (2016). Rhizospheric bacterial community of endemic Rhododendron arboreum Sm. Ssp. delavayi along eastern Himalayan slope in Tawang. Frontiers in Plant Science, 7, 1345.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Nagerabi, S. A., Elshafie, A. E., & Alkhanjari, S. S. (2014). Endophytic fungi associated with endogenous Boswellia sacra. Biodiversitas Journal of Biological Diversity, 15(1).

    Google Scholar 

  • Fonseca-García, C., Coleman-Derr, D., Garrido, E., Visel, A., Tringe, S. G., & Partida-Martínez, L. P. (2016). The cacti microbiome: Interplay between habitat-filtering and host-specificity. Frontiers in Microbiology, 7, 150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia, A., Polonio, J., Polli, A., Santos, C., Rhoden, S., Quecine, M., … Pamphile, J. (2016). Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing. Genetics and molecular research: GMR, 15(4).

    Google Scholar 

  • Golinska, P., Wypij, M., Agarkar, G., Rathod, D., Dahm, H., & Rai, M. (2015). Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek, 108(2), 267–289.

    Google Scholar 

  • Hao, D., Ma, P., Mu, J., Chen, S., Xiao, P., Peng, Y., … Sun, C. (2012). De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum. Science China Life Sciences, 55(5), 452–466.

    Article  CAS  PubMed  Google Scholar 

  • Horton, M. W., Bodenhausen, N., Beilsmith, K., Meng, D., Muegge, B. D., Subramanian, S., ... & Bergelson, J. (2014). Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature Communications, 5, 5320.

    Google Scholar 

  • Humphrey, P. T., Nguyen, T. T., Villalobos, M. M., & Whiteman, N. K. (2014). Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Molecular Ecology, 23(6), 1497–1515.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, D., Maymon, M., Agapakis, C. M., Lee, A., Wang, A., Prigge, B. A., … Hirsch, A. M. (2013). A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. American Journal of Botany, 100(9), 1713–1725.

    Article  PubMed  Google Scholar 

  • Kembel, S. W., Eisen, J. A., Pollard, K. S., & Green, J. L. (2011). The phylogenetic diversity of metagenomes. PLoS One 6: e23214.

    Google Scholar 

  • Khan, A. L., Al-Harrasi, A., Al-Rawahi, A., Al-Farsi, Z., Al-Mamari, A., Waqas, M., … Shin, J.-H. (2016). Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One, 11(6), e0158207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, A. L., Asaf, S., Al-Rawahi, A., Lee, I. J., & Al-Harrasi, A. (2017). Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree. PloS one, 12(10), e0186939.

    Google Scholar 

  • Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., … Vorholt, J. A. (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. The ISME Journal, 6(7), 1378.

    Article  CAS  PubMed  Google Scholar 

  • Kuang, D.-Y., Wu, H., Wang, Y.-L., Gao, L.-M., Zhang, S.-Z., & Lu, L. (2011). Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): Implication for DNA barcoding and population genetics. Genome, 54(8), 663–673.

    Article  PubMed  Google Scholar 

  • Lebeis, S. L., Paredes, S. H., Lundberg, D. S., Breakfield, N., Gehring, J., McDonald, M., ... & Dangl, J. L. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 349(6250), 860–864.

    Google Scholar 

  • Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marasco, R., Rolli, E., Ettoumi, B., Vigani, G., Mapelli, F., Borin, S., … Cherif, A. (2012). A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One, 7(10), e48479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual, J., Blanco, S., García-López, M., García-Salamanca, A., Bursakov, S. A., Genilloud, O., … van Dillewijn, P. (2016). Assessing bacterial diversity in the rhizosphere of Thymus zygis growing in the Sierra Nevada National Park (Spain) through culture-dependent and independent approaches. PLoS One, 11(1), e0146558.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., … Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 201302837.

    Google Scholar 

  • Pfeiffer, S., Mitter, B., Oswald, A., Schloter-Hai, B., Schloter, M., Declerck, S., & Sessitsch, A. (2016). Rhizosphere microbiomes of potato cultivated in the high Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiology Ecology, 93(2), fiw242.

    Article  PubMed  Google Scholar 

  • Qi, X., Wang, E., Xing, M., Zhao, W., & Chen, X. (2012). Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World Journal of Microbiology and Biotechnology, 28(5), 2257–2265.

    Article  PubMed  Google Scholar 

  • Ritpitakphong, U., Falquet, L., Vimoltust, A., Berger, A., Métraux, J. P., & L’Haridon, F. (2016). The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytologist, 210(3), 1033–1043.

    Article  CAS  PubMed  Google Scholar 

  • Strong, P., & Claus, H. (2011). Laccase: A review of its past and its future in bioremediation. Critical Reviews in Environmental Science and Technology, 41(4), 373–434.

    Article  Google Scholar 

  • Taketani, R. G., Lançoni, M. D., Kavamura, V. N., Durrer, A., Andreote, F. D., & Melo, I. S. (2017). Dry season constrains bacterial phylogenetic diversity in a semi-arid rhizosphere system. Microbial Ecology, 73(1), 153–161.

    Article  PubMed  Google Scholar 

  • Tan, Y., Cui, Y., Li, H., Kuang, A., Li, X., Wei, Y., & Ji, X. (2017). Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. Journal of Basic Microbiology, 57(4), 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196–1206.

    Article  PubMed  Google Scholar 

  • Wingender, G., Stepniak, D., Krebs, P., Lin, L., McBride, S., Wei, B., … Kronenberg, M. (2012). Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology, 143(2), 418–428.

    Article  CAS  PubMed  Google Scholar 

  • Wu, P., Xiong, X., Xu, Z., Lu, C., Cheng, H., Lyu, X., … Lyu, Y. (2016). Bacterial communities in the rhizospheres of three mangrove tree species from Beilun Estuary, China. PLoS One, 11(10), e0164082.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Harrasi, A., Khan, A.L., Asaf, S., Al-Rawahi, A. (2019). Microbial Communities Accompanying Cultivated and Wild Boswellia sacra Trees. In: Biology of Genus Boswellia. Springer, Cham. https://doi.org/10.1007/978-3-030-16725-7_8

Download citation

Publish with us

Policies and ethics