Skip to main content

Frankincense Tree Physiology and Its Responses to Wounding Stress

  • Chapter
  • First Online:
Biology of Genus Boswellia

Abstract

Boswellia trees are often tapped using wounding or tapping for resin collection, which is an anthropogenic activity with human-derived benefits. The tree responds to these incisions by producing resin to defend itself from the attacks of fungal pathogens, herbivores and insects. Although the resin biosynthesis pathway has not yet been fully elucidated, the tree physiology of B. sacra and B. papyrifera has recently been studied. The wounding response of B. sacra in terms of biochemical modulation has been studied by assessing the endogenous phytohormones (gibberellic acid, salicylic acid, abscisic acid and jasmonic acid), essential amino acids and related gene expression. In B. papyrifera, the vapour pressure deficit and stomatal closure in response to tapping were studied through starch/sugar metabolism and leaf gas exchange. Most defence-related biochemical pathways are activated to cope with wounding stress. However, these responses may also vary depending on the tree health, climatic conditions and growth environment. Furthermore, in-depth studies are essential for understanding the growth, ecophysiology and transcriptional regulation under a variety of environmental stresses such as heat, drought and high mineral-containing soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Harrasi, A., Rehman, N. U., Khan, A. L., Al-Broumi, M., Al-Amri, I., Hussain, J., … Csuk, R. (2018). Chemical, molecular and structural studies of Boswellia species: β-Boswellic Aldehyde and 3-epi-11β-Dihydroxy BA as precursors in biosynthesis of boswellic acids. PLoS One, 13(6), e0198666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bansal, S., & Germino, M. J. (2009). Temporal variation of nonstructural carbohydrates in montane conifers: Similarities and differences among developmental stages, species and environmental conditions. Tree Physiology, 29(4), 559–568.

    Article  PubMed  Google Scholar 

  • Bilal, S., Khan, A. L., Shahzad, R., Kim, Y.-H., Imran, M., Khan, M. J., … Lee, I.-J. (2018). Mechanisms of Cr (VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr (VI) phytotoxic mitigating effects in soybean (Glycine max L.). Ecotoxicology and Environmental Safety, 164, 648–658.

    Article  CAS  PubMed  Google Scholar 

  • Bömke, C., & Tudzynski, B. (2009). Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry, 70(15–16), 1876–1893.

    Article  PubMed  CAS  Google Scholar 

  • Bown, A. W., & Shelp, B. J. (2016). Plant GABA: not just a metabolite. Trends in Plant Science, 21(10), 811–813.

    Article  CAS  PubMed  Google Scholar 

  • Campanello, P. I., Gatti, M. G., & Goldstein, G. (2008). Coordination between water-transport efficiency and photosynthetic capacity in canopy tree species at different growth irradiances. Tree Physiology, 28(1), 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Choi, W. G., Miller, G., Wallace, I., Harper, J., Mittler, R., & Gilroy, S. (2017). Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. The Plant Journal, 90(4), 698–707.

    Article  CAS  PubMed  Google Scholar 

  • Davey, M., Stals, E., Panis, B., Keulemans, J., & Swennen, R. (2005). High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry, 347(2), 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Dekkers, B. J., & Smeekens, S. C. (2018). Sugar and abscisic acid regulation of germination and transition to seedling growth. Annual Plant Reviews, 27, 305–327.

    Google Scholar 

  • Eshete, A., Sterck, F. J., & Bongers, F. (2012). Frankincense production is determined by tree size and tapping frequency and intensity. Forest Ecology and Management, 274, 136–142.

    Article  Google Scholar 

  • Farah, A. Y. (1994). The milk of the Boswellia forests: frankincense production among the pastoral Somali: EPOS, Environmental Policy and Society, Uppsala, Sweden.

    Google Scholar 

  • Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, 41(2), 281–284.

    Article  CAS  Google Scholar 

  • Farmer, E. E., AlmĂ©ras, E., & Krishnamurthy, V. (2003). Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Current Opinion in Plant Biology, 6(4), 372–378.

    Article  CAS  PubMed  Google Scholar 

  • Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal, 4(2), 83–91.

    Article  Google Scholar 

  • Hauser, F., Li, Z., Waadt, R., & Schroeder, J. I. (2017). SnapShot: abscisic acid signaling. Cell, 171(7), 1708–1708. e1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat, S., Fariduddin, Q., Ali, B., & Ahmad, A. (2005). Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53(4), 433–437.

    Article  CAS  Google Scholar 

  • Hayat, S., Yadav, S., Ali, B., & Ahmad, A. (2010). Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of Lycopersicon esculentum. Russian Journal of Plant Physiology, 57(2), 212–221.

    Article  CAS  Google Scholar 

  • Hedden, P., & Sponsel, V. (2015). A century of gibberellin research. Journal of Plant Growth Regulation, 34(4), 740–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedden, P., & Thomas, S. G. (2012). Gibberellin biosynthesis and its regulation. Biochemical Journal, 444(1), 11–25.

    Article  CAS  PubMed  Google Scholar 

  • Helander, J. D., & Cutler, S. R. (2018). Abscisic acid signaling and biosynthesis: Protein structures and molecular probes. In Plant Structural Biology: Hormonal Regulations (pp. 113–146). Springer, Cham.

    Google Scholar 

  • Hofstetter, R., Mahfouz, J. B., Klepzig, K. D., & Ayres, M. (2005). Effects of tree phytochemistry on the interactions among endophloedic fungi associated with the southern pine beetle. Journal of Chemical Ecology, 31(3), 539–560.

    Article  CAS  PubMed  Google Scholar 

  • Holbrook, N. M., & Knoblauch, M. (2018). Editorial overview: Physiology and metabolism: Phloem: a supracellular highway for the transport of sugars, signals, and pathogens: Current Opinion in Plant Biology, 43, iii-vii.

    Google Scholar 

  • Hyodo, H. (2017). Stress/wound ethylene The plant hormone ethylene (pp. 43-63): CRC Press, Florida, USA.

    Google Scholar 

  • Jacobo-Velázquez, D. A., González-AgĂĽero, M., & Cisneros-Zevallos, L. (2015). Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Scientific Reports, 5, 8608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kebede, T. (2010). Current production systems of frankincense from Boswellia papyrifera tree; its implications on sustainable utilization of the resource. MSc thesis, Mekelle University, Mekelle.

    Google Scholar 

  • Khan, A. L., Al-Harrasi, A., Al-Rawahi, A., Al-Farsi, Z., Al-Mamari, A., Waqas, M., … Shin, J.-H. (2016). Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One, 11(6), e0158207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan, A. L., Al-Harrasi, A., Shahzad, R., Imran, Q. M., Yun, B.-W., Kim, Y.-H., … Lee, I.-J. (2018). Regulation of endogenous phytohormones and essential metabolites in frankincense-producing Boswellia sacra under wounding stress. Acta Physiologiae Plantarum, 40(6), 113.

    Article  CAS  Google Scholar 

  • Khan, A. L., Hamayun, M., Kang, S.-M., Kim, Y.-H., Jung, H.-Y., Lee, J.-H., & Lee, I.-J. (2012). Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiology, 12(1), 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A. L., Hussain, J., Al-Harrasi, A., Al-Rawahi, A., & Lee, I.-J. (2015). Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology, 35(1), 62–74.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A. L., Waqas, M., Asaf, S., Kamran, M., Shahzad, R., Bilal, S., … Yun, B.-W. (2017). Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environmental and Experimental Botany, 133, 58–69.

    Article  CAS  Google Scholar 

  • Khan, A. L., Waqas, M., Hussain, J., Al-Harrasi, A., Hamayun, M., & Lee, I.-J. (2015a). Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. Journal of Hazardous Materials, 295, 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A. L., Waqas, M., Hussain, J., Al-Harrasi, A., Hamayun, M., & Lee, I.-J. (2015b). Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LK5 and comparison with exogenous GA 3. Journal of Hazardous Materials, 295, 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. A., Ungar, I. A., & Showalter, A. M. (2000). Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Communications in Soil Science & Plant Analysis, 31(17–18), 2763–2774.

    Article  CAS  Google Scholar 

  • Kim, D. S., & Hwang, B. K. (2014). An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Journal of Experimental Botany, 65(9), 2295–2306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, I. S., Koppula, S., Park, S. Y., & Choi, D. K. (2017). Analysis of epidermal growth factor receptor related gene expression changes in a cellular and animal model of Parkinson’s disease. International Journal of Molecular Sciences, 18(2). https://doi.org/10.3390/ijms18020430

    Article  PubMed Central  CAS  Google Scholar 

  • Kim, Y.-B., Kim, S.-M., Kang, M.-K., Kuzuyama, T., Lee, J. K., Park, S.-C., … Kim, S.-U. (2009). Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes. Tree Physiology, 29(5), 737–749.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.-H., Hwang, S.-J., Waqas, M., Khan, A. L., Lee, J.-H., Lee, J.-D., … Lee, I.-J. (2015). Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Frontiers in Plant Science, 6, 714.

    PubMed  PubMed Central  Google Scholar 

  • Kim, Y., Seo, C.-W., Khan, A. L., Mun, B.-G., Shahzad, R., Ko, J.-W., … Lee, I.-J. (2018). Ethylene mitigates waterlogging stress by regulating glutathione biosynthesis-related transcripts in soybeans. bioRxiv, 252312.

    Google Scholar 

  • Klay, I., Gouia, S., Liu, M., Mila, I., Khoudi, H., Bernadac, A., … Pirrello, J. (2018). Ethylene Response Factors (ERF) are differentially regulated by different abiotic stress types in tomato plants. Plant Science, 274, 137.

    Article  CAS  PubMed  Google Scholar 

  • Koldenkova, V. P., & Hatsugai, N. (2018). How do Plants Keep their Functional Integrity? Plant signaling & behavior, 13(8), e1464853.

    Google Scholar 

  • Koo, A. J. (2018). Metabolism of the plant hormone jasmonate: A sentinel for tissue damage and master regulator of stress response. Phytochemistry Reviews, 17(1), 51–80.

    Article  CAS  Google Scholar 

  • Kovalchuk, A., Keriö, S., Oghenekaro, A. O., Jaber, E., Raffaello, T., & Asiegbu, F. O. (2013). Antimicrobial defenses and resistance in forest trees: Challenges and perspectives in a genomic era. Annual Review of Phytopathology, 51, 221–244.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, P. (2012). Physiology of woody plants: Academic Press, New York, USA.

    Google Scholar 

  • Lacombe, B., & Achard, P. (2016). Long-distance transport of phytohormones through the plant vascular system. Current Opinion in Plant Biology, 34, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Langenheim, J. H. (2003). Plant resins: Chemistry, evolution, ecology, and ethnobotany. Oregon, US: Timber Press.

    Google Scholar 

  • Lautner, S., & Fromm, J. (2010). Calcium-dependent physiological processes in trees. Journal of Plant Biology, 12(2), 268–274.

    Article  CAS  Google Scholar 

  • LeĂłn, J., Rojo, E., & Sánchez-Serrano, J. J. (2001). Wound signalling in plants. Journal of Experimental Botany, 52(354), 1–9.

    Article  PubMed  Google Scholar 

  • MacMillan, J. (2001). Occurrence of gibberellins in vascular plants, fungi, and bacteria. Journal of Plant Growth Regulation, 20(4), 387–442.

    Article  CAS  PubMed  Google Scholar 

  • Magome, H., Nomura, T., Hanada, A., Takeda-Kamiya, N., Ohnishi, T., Shinma, Y., … Yamaguchi, S. (2013). CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proceedings of the National Academy of Sciences, 110(5), 1947–1952.

    Article  CAS  Google Scholar 

  • McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., … Williams, D. G. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719–739.

    Article  PubMed  Google Scholar 

  • McDowell, R. E., Amsler, M. O., Li, Q., Lancaster, J. R., Jr., & Amsler, C. D. (2015). The immediate wound-induced oxidative burst of Saccharina latissima depends on light via photosynthetic electron transport. Journal of Phycology, 51(3), 431–441.

    Article  CAS  PubMed  Google Scholar 

  • Mengistu, T., Sterck, F. J., Anten, N. P., & Bongers, F. (2012). Frankincense tapping reduced photosynthetic carbon gain in Boswellia papyrifera (Burseraceae) trees. Forest Ecology and Management, 278, 1–8.

    Article  Google Scholar 

  • Mengistu, T., Sterck, F. J., Fetene, M., & Bongers, F. (2013). Frankincense tapping reduces the carbohydrate storage of Boswellia trees. Tree Physiology, 33(6), 601–608.

    Article  CAS  PubMed  Google Scholar 

  • Mihlan, M., Homann, V., Liu, T. W. D., & Tudzynski, B. (2003). AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Molecular Microbiology, 47(4), 975–991.

    Article  CAS  PubMed  Google Scholar 

  • Oyarce, P., & Gurovich, L. (2011). Evidence for the transmission of information through electric potentials in injured avocado trees. Journal of Plant Physiology, 168(2), 103–108.

    Article  CAS  PubMed  Google Scholar 

  • Prisic, S., Xu, M., Wilderman, P. R., & Peters, R. J. (2004). Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions. Plant Physiology, 136(4), 4228–4236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, X., Li, M.-W., Xie, M., Liu, X., Ni, M., Shao, G., … Wong, F.-L. (2014). Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications, 5, 4340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman, N. U., Ali, L., Al-Harrasi, A., Mabood, F., Al-Broumi, M., Khan, A. L., … Csuk, R. (2018). Quantification of AKBA in Boswellia sacra using NIRS coupled with PLSR as an alternative method and cross-validation by HPLC. Phytochemical Analysis, 29(2), 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., Griffiths, J., Powers, S. J., Gong, F., … Thomas, S. G. (2008). The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. The Plant Journal, 53(3), 488–504.

    Article  CAS  PubMed  Google Scholar 

  • Rijkers, T., Ogbazghi, W., Wessel, M., & Bongers, F. (2006). The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. Journal of Applied Ecology, 43(6), 1188–1195.

    Article  Google Scholar 

  • Savatin, D. V., Gramegna, G., Modesti, V., & Cervone, F. (2014). Wounding in the plant tissue: The defense of a dangerous passage. Frontiers in Plant Science, 5, 470.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholz, S. S., Reichelt, M., Mekonnen, D. W., Ludewig, F., & Mithöfer, A. (2015). Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response. Frontiers in Plant Science, 6, 1128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulze, E.-D., & Ehleringer, J. (1984). The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes. Planta, 162(3), 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Shahzad, R., Waqas, M., Khan, A. L., Asaf, S., Khan, M. A., Kang, S.-M., … Lee, I.-J. (2016). Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiology and Biochemistry, 106, 236–243.

    Article  CAS  PubMed  Google Scholar 

  • Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164(3), 317–322.

    Article  CAS  Google Scholar 

  • Silpi, U., Lacointe, A., Kasempsap, P., Thanysawanyangkura, S., Chantuma, P., Gohet, E., … Thaler, P. (2007). Carbohydrate reserves as a competing sink: Evidence from tapping rubber trees. Tree Physiology, 27(6), 881–889.

    Article  CAS  PubMed  Google Scholar 

  • Silpi, U., Thaler, P., Kasemsap, P., Lacointe, A., Chantuma, A., Adam, B., … AmĂ©glio, T. (2006). Effect of tapping activity on the dynamics of radial growth of Hevea brasiliensis trees. Tree Physiology, 26(12), 1579–1587.

    Article  PubMed  Google Scholar 

  • Suzuki, N., Bassil, E., Hamilton, J. S., Inupakutika, M. A., Zandalinas, S. I., Tripathy, D., … Kumazaki, A. (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One, 11(1), e0147625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tadesse, W., Feleke, S., & Eshete, T. (2004). Comparative study of traditional and new tapping methods on frankincense yield of boswellia papyrifera. Ethiopian Journal of Natural Resources.

    Google Scholar 

  • Takahashi, N., Kitamura, H., Kawarada, A., Seta, Y., Takai, M., Tamura, S., & Sumiki, Y. (1955). Biochemical studies on “Bakanae” fungus: Part XXXIV. Isolation of gibberellins and their properties part XXXV. Relation between gibberellins, A1, A2 and gibberellic acid. Journal of the Agricultural Chemical Society of Japan, 19(4), 267–281.

    Google Scholar 

  • Thomas, S. G., & Hedden, P. (2018). Gibberellin metabolism and signal transduction. Annual Plant Reviews, 24, 147–184.

    Google Scholar 

  • Tolera, M., Sass-Klaassen, U., Eshete, A., Bongers, F., & Sterck, F. J. (2013). Frankincense tree recruitment failed over the past half century. Forest Ecology and Management, 304, 65–72.

    Article  Google Scholar 

  • Torres-Contreras, A. M., SenĂ©s-Guerrero, C., Pacheco, A., González-AgĂĽero, M., Ramos-Parra, P. A., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2018). Genes differentially expressed in broccoli as an early and late response to wounding stress. Postharvest Biology and Technology, 145, 172–182.

    Article  CAS  Google Scholar 

  • Trapp, S. C., & Croteau, R. B. (2001). Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158(2), 811–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., . . . Pandey, M. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in plant science, 8, 161–174.

    Google Scholar 

  • Wasternack, C., Stenzel, I., Hause, B., Hause, G., Kutter, C., Maucher, H., … Miersch, O. (2006). The wound response in tomato–role of jasmonic acid. Journal of Plant Physiology, 163(3), 297–306.

    Article  CAS  PubMed  Google Scholar 

  • Zarate, S. I., Kempema, L. A., & Walling, L. L. (2007). Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiology, 143(2), 866–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zebelo, S. A., & Maffei, M. E. (2014). Role of early signalling events in plant–insect interactions. Journal of Experimental Botany, 66(2), 435–448.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y., & Underhill, S. J. (2015). Breadfruit (Artocarpus altilis) gibberellin 20-oxidase genes: Sequence variants, stem elongation and abiotic stress response. Tree Genetics & Genomes, 11(4), 84.

    Article  Google Scholar 

  • Zhu, Y., Nomura, T., Xu, Y., Zhang, Y., Peng, Y., Mao, B., … Li, P. (2006). ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. The Plant Cell, 18(2), 442–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, J., Liu, A., Chen, X., Zhou, X., Gao, G., Wang, W., & Zhang, X. (2009). Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. Journal of Plant Physiology, 166(8), 851–861.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Harrasi, A., Khan, A.L., Asaf, S., Al-Rawahi, A. (2019). Frankincense Tree Physiology and Its Responses to Wounding Stress. In: Biology of Genus Boswellia. Springer, Cham. https://doi.org/10.1007/978-3-030-16725-7_4

Download citation

Publish with us

Policies and ethics