Skip to main content

Intranasal tPA Application for Axonal Remodeling in Rodent Stroke and Traumatic Brain Injury Models

  • Chapter
  • First Online:
  • 343 Accesses

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Stroke and traumatic brain injury (TBI) are the major causes of adult long-term disability worldwide. Unfortunately, there are no efficacious therapies available for the vast majority of stroke and TBI patients during their convalescence. As a thrombolytic agent, recombinant tissue plasminogen activator (tPA) is the only FDA approved therapeutic agent for treatment of acute ischemic stroke; however, the application of tPA is limited by the narrow therapeutic time window and potential adverse side effects on brain edema and hemorrhage. In addition to vascular endothelium derived tPA in the circulation, neuroendocrine tissue synthesized tPA is widely distributed in the CNS and is involved in axonal path finding, synaptic plasticity and dendritic remodeling during development, and axonal outgrowth after stroke and injury. We have investigated the therapeutic effect of tPA on neurological recovery and corticospinal axonal remodeling in rodent subacute stroke and TBI models administered intranasally, to bypass the blood-brain barrier and avoid the rapid inactivation and clearance of tPA in the circulation. The neurorestorative benefits of tPA in subacute stroke and TBI treatments and the potential underlying mechanisms are discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schreiber SS, Tan Z, Sun N, Wang L, Zlokovic BV. Immunohistochemical localization of tissue plasminogen activator in vascular endothelium of stroke-prone regions of the rat brain. Neurosurgery. 1998;43:909–13.

    Article  CAS  PubMed  Google Scholar 

  2. Camiolo SM, Thorsen S, Astrup T. Fibrinogenolysis and fibrinolysis with tissue plasminogen activator, urokinase, streptokinase-activated human globulin, and plasmin. Proc Soc Exp Biol Med. 1971;138:277–80.

    Article  CAS  PubMed  Google Scholar 

  3. Vassalli JD, Sappino AP, Belin D. The plasminogen activator/plasmin system. J Clin Invest. 1991;88:1067–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sizer IW, Wagley PF. The action of tyrosinase on thrombin, fibrinogen, and fibrin. J Biol Chem. 1951;192:213–21.

    CAS  PubMed  Google Scholar 

  5. Sappino AP, Madani R, Huarte J, Belin D, Kiss JZ, Wohlwend A, Vassalli JD. Extracellular proteolysis in the adult murine brain. J Clin Invest. 1993;92:679–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Teesalu T, Kulla A, Simisker A, Siren V, Lawrence DA, Asser T, Vaheri A. Tissue plasminogen activator and neuroserpin are widely expressed in the human central nervous system. Thromb Haemost. 2004;92:358–68.

    Article  CAS  PubMed  Google Scholar 

  7. Salles FJ, Strickland S. Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. J Neurosci. 2002;22:2125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen CC, Chu P, Brumberg JC. Experience-dependent regulation of tissue-type plasminogen activator in the mouse barrel cortex. Neurosci Lett. 2015;599:152–7.

    Article  CAS  PubMed  Google Scholar 

  9. Miyata S, Nakatani Y, Hayashi N, Nakashima T. Matrix-degrading enzymes tissue plasminogen activator and matrix metalloprotease-3 in the hypothalamo-neurohypophysial system. Brain Res. 2005;1058:1–9.

    Article  CAS  PubMed  Google Scholar 

  10. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273:18623–32.

    Article  CAS  PubMed  Google Scholar 

  11. Seeds NW, Williams BL, Bickford PC. Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science. 1995;270:1992–4.

    Article  CAS  PubMed  Google Scholar 

  12. Shin CY, Kundel M, Wells DG. Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. J Neurosci. 2004;24:9425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lochner JE, Honigman LS, Grant WF, Gessford SK, Hansen AB, Silverman MA, Scalettar BA. Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. J Neurobiol. 2006;66:564–77.

    Article  CAS  PubMed  Google Scholar 

  14. Minor K, Phillips J, Seeds NW. Tissue plasminogen activator promotes axonal outgrowth on CNS myelin after conditioned injury. J Neurochem. 2009;109:706–15.

    Article  CAS  PubMed  Google Scholar 

  15. Pittman RN, Ivins JK, Buettner HM. Neuronal plasminogen activators: cell surface binding sites and involvement in neurite outgrowth. J Neurosci. 1989;9:4269–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qian JY, Chopp M, Liu Z. Mesenchymal stromal cells promote axonal outgrowth alone and synergistically with astrocytes via tPA. PLoS One. 2016;11:e0168345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wu YP, Siao CJ, Lu W, Sung TC, Frohman MA, Milev P, Bugge TH, Degen JL, Levine JM, Margolis RU, Tsirka SE. The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. J Cell Biol. 2000;148:1295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moonen G, Grau-Wagemans MP, Selak I. Plasminogen activator-plasmin system and neuronal migration. Nature. 1982;298:753–5.

    Article  CAS  PubMed  Google Scholar 

  19. Seeds NW, Basham ME, Haffke SP. Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc Natl Acad Sci U S A. 1999;96:14118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baranes D, Lederfein D, Huang YY, Chen M, Bailey CH, Kandel ER. Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron. 1998;21:813–25.

    Article  CAS  PubMed  Google Scholar 

  21. Mataga N, Mizuguchi Y, Hensch TK. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron. 2004;44:1031–41.

    Article  CAS  PubMed  Google Scholar 

  22. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004;306:487–91.

    Article  CAS  PubMed  Google Scholar 

  23. Samson AL, Medcalf RL. Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron. 2006;50:673–8.

    Article  CAS  PubMed  Google Scholar 

  24. Frey U, Muller M, Kuhl D. A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice. J Neurosci. 1996;16:2057–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhuo M, Holtzman DM, Li Y, Osaka H, DeMaro J, Jacquin M, Bu G. Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci. 2000;20:542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calabresi P, Napolitano M, Centonze D, Marfia GA, Gubellini P, Teule MA, Berretta N, Bernardi G, Frati L, Tolu M, Gulino A. Tissue plasminogen activator controls multiple forms of synaptic plasticity and memory. Eur J Neurosci. 2000;12:1002–12.

    Article  CAS  PubMed  Google Scholar 

  27. Madani R, Hulo S, Toni N, Madani H, Steimer T, Muller D, Vassalli JD. Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 1999;18:3007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med. 1998;4:228–31.

    Article  CAS  PubMed  Google Scholar 

  29. Nagai N, De Mol M, Lijnen HR, Carmeliet P, Collen D. Role of plasminogen system components in focal cerebral ischemic infarction: a gene targeting and gene transfer study in mice. Circulation. 1999;99:2440–4.

    Article  CAS  PubMed  Google Scholar 

  30. Tabrizi P, Wang L, Seeds N, McComb JG, Yamada S, Griffin JH, Carmeliet P, Weiss MH, Zlokovic BV. Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic background. Arterioscler Thromb Vasc Biol. 1999;19:2801–6.

    Article  CAS  PubMed  Google Scholar 

  31. Nagai N, Zhao BQ, Suzuki Y, Ihara H, Urano T, Umemura K. Tissue-type plasminogen activator has paradoxical roles in focal cerebral ischemic injury by thrombotic middle cerebral artery occlusion with mild or severe photochemical damage in mice. J Cereb Blood Flow Metab. 2002;22:648–51.

    Article  CAS  PubMed  Google Scholar 

  32. Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, Lawrence DA. Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood. 2000;96:569–76.

    CAS  PubMed  Google Scholar 

  33. Cinelli P, Madani R, Tsuzuki N, Vallet P, Arras M, Zhao CN, Osterwalder T, Rulicke T, Sonderegger P. Neuroserpin, a neuroprotective factor in focal ischemic stroke. Mol Cell Neurosci. 2001;18:443–57.

    Article  CAS  PubMed  Google Scholar 

  34. Wu J, Echeverry R, Guzman J, Yepes M. Neuroserpin protects neurons from ischemia-induced plasmin-mediated cell death independently of tissue-type plasminogen activator inhibition. Am J Pathol. 2010;177:2576–84.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bednar MM, McAuliffe T, Raymond S, Gross CE. Tissue plasminogen activator reduces brain injury in a rabbit model of thromboembolic stroke. Stroke. 1990;21:1705–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kilic E, Hermann DM, Hossmann KA. Recombinant tissue-plasminogen activator-induced thrombolysis after cerebral thromboembolism in mice. Acta Neuropathol. 2000;99:219–22.

    Article  CAS  PubMed  Google Scholar 

  37. Meng W, Wang X, Asahi M, Kano T, Asahi K, Ackerman RH, Lo EH. Effects of tissue type plasminogen activator in embolic versus mechanical models of focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 1999;19:1316–21.

    Article  CAS  PubMed  Google Scholar 

  38. Overgaard K, Sereghy T, Boysen G, Pedersen H, Diemer NH. Reduction of infarct volume and mortality by thrombolysis in a rat embolic stroke model. Stroke. 1992;23:1167–73. discussion 1174.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang RL, Chopp M, Zhang ZG, Divine G. Early (1 h) administration of tissue plasminogen activator reduces infarct volume without increasing hemorrhagic transformation after focal cerebral embolization in rats. J Neurol Sci. 1998;160:1–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kilic E, Hermann DM, Hossmann KA. Recombinant tissue plasminogen activator reduces infarct size after reversible thread occlusion of middle cerebral artery in mice. Neuroreport. 1999;10:107–11.

    Article  CAS  PubMed  Google Scholar 

  41. Kilic E, Kilic U, Bassetti CL, Hermann DM. Intravenously administered recombinant tissue-plasminogen activator attenuates neuronal injury after mild focal cerebral ischemia in mice. Neuroreport. 2004;15:687–9.

    Article  CAS  PubMed  Google Scholar 

  42. Klein GM, Li H, Sun P, Buchan AM. Tissue plasminogen activator does not increase neuronal damage in rat models of global and focal ischemia. Neurology. 1999;52:1381–4.

    Article  CAS  PubMed  Google Scholar 

  43. Meiner Z, Sajin A, Schwartz I, Tsenter J, Yovchev I, Eichel R, Ben-Hur T, Leker RR. Rehabilitation outcomes of stroke patients treated with tissue plasminogen activator. PM R. 2010;2:698–702. quiz 792.

    Article  PubMed  Google Scholar 

  44. Echeverry R, Wu J, Haile WB, Guzman J, Yepes M. Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus. J Clin Invest. 2010;120:2194–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flavin MP, Zhao G. Tissue plasminogen activator protects hippocampal neurons from oxygen-glucose deprivation injury. J Neurosci Res. 2001;63:388–94.

    Article  CAS  PubMed  Google Scholar 

  46. Yi JS, Kim YH, Koh JY. Infarct reduction in rats following intraventricular administration of either tissue plasminogen activator (tPA) or its non-protease mutant S478A-tPA. Exp Neurol. 2004;189:354–60.

    Article  CAS  PubMed  Google Scholar 

  47. Kim YH, Park JH, Hong SH, Koh JY. Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator. Science. 1999;284:647–50.

    Article  CAS  PubMed  Google Scholar 

  48. Wu F, Wu J, Nicholson AD, Echeverry R, Haile WB, Catano M, An J, Lee AK, Duong D, Dammer EB, Seyfried NT, Tong FC, Votaw JR, Medcalf RL, Yepes M. Tissue-type plasminogen activator regulates the neuronal uptake of glucose in the ischemic brain. J Neurosci. 2012;32:9848–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nicole O, Ali C, Docagne F, Plawinski L, MacKenzie ET, Vivien D, Buisson A. Neuroprotection mediated by glial cell line-derived neurotrophic factor: involvement of a reduction of NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci. 2001;21:3024–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu F, Echeverry R, Wu J, An J, Haile WB, Cooper DS, Catano M, Yepes M. Tissue-type plasminogen activator protects neurons from excitotoxin-induced cell death via activation of the ERK1/2-CREB-ATF3 signaling pathway. Mol Cell Neurosci. 2013;52:9–19.

    Article  CAS  PubMed  Google Scholar 

  51. Chen N, Chopp M, Xiong Y, Qian JY, Lu M, Zhou D, He L, Liu Z. Subacute intranasal administration of tissue plasminogen activator improves stroke recovery by inducing axonal remodeling in mice. Exp Neurol. 2018;304:82–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gravanis I, Tsirka SE. Tissue-type plasminogen activator as a therapeutic target in stroke. Expert Opin Ther Targets. 2008;12:159–70.

    Article  CAS  PubMed  Google Scholar 

  53. Liu Z, Li Y, Zhang L, Xin H, Cui Y, Hanson LR, Frey WH 2nd, Chopp M. Subacute intranasal administration of tissue plasminogen activator increases functional recovery and axonal remodeling after stroke in rats. Neurobiol Dis. 2012;45:804–9.

    Article  CAS  PubMed  Google Scholar 

  54. Meng Y, Chopp M, Zhang Y, Liu Z, An A, Mahmood A, Xiong Y. Subacute intranasal administration of tissue plasminogen activator promotes neuroplasticity and improves functional recovery following traumatic brain injury in rats. PLoS One. 2014;9:e106238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99:1654–73.

    Article  CAS  PubMed  Google Scholar 

  56. Bagger MA, Bechgaard E. The potential of nasal application for delivery to the central brain-a microdialysis study of fluorescein in rats. Eur J Pharm Sci. 2004;21:235–42.

    Article  CAS  PubMed  Google Scholar 

  57. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127:481–96.

    Article  CAS  PubMed  Google Scholar 

  58. Harada T, Kano T, Katayama Y, Matsuzaki T, Tejima E, Koshinaga M. Tissue plasminogen activator extravasated through the cerebral vessels: evaluation using a rat thromboembolic stroke model. Thromb Haemost. 2005;94:791–6.

    PubMed  Google Scholar 

  59. Lochhead JJ, Wolak DJ, Pizzo ME, Thorne RG. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 2015;35:371–81.

    Article  CAS  PubMed  Google Scholar 

  60. Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest. 2003;112:1533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kidwell CS, Latour L, Saver JL, Alger JR, Starkman S, Duckwiler G, Jahan R, Vinuela F, Investigators UT, Kang DW, Warach S. Thrombolytic toxicity: blood brain barrier disruption in human ischemic stroke. Cerebrovasc Dis. 2008;25:338–43.

    Article  CAS  PubMed  Google Scholar 

  62. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC Jr, Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden P, Marler JR, Patel S, Tilley BC, Albers G, Bluhmki E, Wilhelm M, Hamilton S, ATLANTIS Trials Investigators, ECASS Trials Investigators, NINDS rt-PA Study Group Investigators. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. 2004;363:768–74.

    Article  PubMed  Google Scholar 

  63. Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59:735–42.

    Article  CAS  PubMed  Google Scholar 

  64. Schallert T, Whishaw IQ. Bilateral cutaneous stimulation of the somatosensory system in hemidecorticate rats. Behav Neurosci. 1984;98:518–40.

    Article  CAS  PubMed  Google Scholar 

  65. Hernandez TD, Schallert T. Seizures and recovery from experimental brain damage. Exp Neurol. 1988;102:318–24.

    Article  CAS  PubMed  Google Scholar 

  66. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32:1005–11.

    Article  CAS  PubMed  Google Scholar 

  67. Farr TD, Whishaw IQ. Quantitative and qualitative impairments in skilled reaching in the mouse (Mus musculus) after a focal motor cortex stroke. Stroke. 2002;33:1869–75.

    Article  PubMed  Google Scholar 

  68. Liu Z, Chopp M, Ding X, Cui Y, Li Y. Axonal remodeling of the corticospinal tract in the spinal cord contributes to voluntary motor recovery after stroke in adult mice. Stroke. 2013;44:1951–6.

    Article  PubMed  Google Scholar 

  69. Choi SH, Woodlee MT, Hong JJ, Schallert T. A simple modification of the water maze test to enhance daily detection of spatial memory in rats and mice. J Neurosci Methods. 2006;156:182–93.

    Article  PubMed  Google Scholar 

  70. Mammi P, Zaccaria B, Franceschini M. Early rehabilitative treatment in patients with traumatic brain injuries: outcome at one-year follow-up. Eura Medicophys. 2006;42:17–22.

    CAS  PubMed  Google Scholar 

  71. Rijntjes M. Mechanisms of recovery in stroke patients with hemiparesis or aphasia: new insights, old questions and the meaning of therapies. Curr Opin Neurol. 2006;19:76–83.

    Article  PubMed  Google Scholar 

  72. Heffner RS, Masterton RB. The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol. 1983;23:165–83.

    Article  CAS  PubMed  Google Scholar 

  73. Caeyenberghs K, Leemans A, Geurts M, Linden CV, Smits-Engelsman BC, Sunaert S, Swinnen SP. Correlations between white matter integrity and motor function in traumatic brain injury patients. Neurorehabil Neural Repair. 2011;25:492–502.

    Article  PubMed  Google Scholar 

  74. Maraka S, Jiang Q, Jafari-Khouzani K, Li L, Malik S, Hamidian H, Zhang T, Lu M, Soltanian-Zadeh H, Chopp M, Mitsias PD. Degree of corticospinal tract damage correlates with motor function after stroke. Ann Clin Transl Neurol. 2014;1:891–9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ressel V, O’Gorman Tuura R, Scheer I, van Hedel HJA. Diffusion tensor imaging predicts motor outcome in children with acquired brain injury. Brain Imaging Behav. 2017;11:1373–84.

    Article  PubMed  Google Scholar 

  76. Schulz R, Park CH, Boudrias MH, Gerloff C, Hummel FC, Ward NS. Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke. 2012;43:2248–51.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007;130:170–80.

    Article  PubMed  Google Scholar 

  78. Liu Z, Li Y, Zhang RL, Cui Y, Chopp M. Bone marrow stromal cells promote skilled motor recovery and enhance contralesional axonal connections after ischemic stroke in adult mice. Stroke. 2011;42:740–4.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Liu Z, Li Y, Zhang X, Savant-Bhonsale S, Chopp M. Contralesional axonal remodeling of the corticospinal system in adult rats following stroke and bone marrow stromal cell treatment. Stroke. 2008;39:2571–7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu Z, Zhang RL, Li Y, Cui Y, Chopp M. Remodeling of the corticospinal innervation and spontaneous behavioral recovery after ischemic stroke in adult mice. Stroke. 2009;40:2546–51.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang Y, Xiong Y, Mahmood A, Meng Y, Liu Z, Qu C, Chopp M. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment. Brain Res. 2010;1353:249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bareyre FM, Kerschensteiner M, Misgeld T, Sanes JR. Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat Med. 2005;11:1355–60.

    Article  CAS  PubMed  Google Scholar 

  83. Pickard GE, Smeraski CA, Tomlinson CC, Banfield BW, Kaufman J, Wilcox CL, Enquist LW, Sollars PJ. Intravitreal injection of the attenuated pseudorabies virus PRV Bartha results in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits. J Neurosci. 2002;22:2701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Seidah NG, Benjannet S, Pareek S, Chretien M, Murphy RA. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 1996;379:247–50.

    Article  CAS  PubMed  Google Scholar 

  85. Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294:1945–8.

    Article  CAS  PubMed  Google Scholar 

  86. Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, Chen ZY, Mark W, Tessarollo L, Lee FS, Lu B, Hempstead BL. Neuronal release of proBDNF. Nat Neurosci. 2009;12:113–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Martin AM, Kuhlmann C, Trossbach S, Jaeger S, Waldron E, Roebroek A, Luhmann HJ, Laatsch A, Weggen S, Lessmann V, Pietrzik CU. The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of N-methyl-D-aspartate receptors. J Biol Chem. 2008;283:12004–13.

    Article  CAS  PubMed  Google Scholar 

  88. Park SY, Lee JY, Choi JY, Park MJ, Kim DS. Nerve growth factor activates brain-derived neurotrophic factor promoter IV via extracellular signal-regulated protein kinase 1/2 in PC12 cells. Mol Cells. 2006;21:237–43.

    CAS  PubMed  Google Scholar 

  89. Hollis ER 2nd, Jamshidi P, Low K, Blesch A, Tuszynski MH. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci U S A. 2009;106:7215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tsuda Y, Kanje M, Dahlin LB. Axonal outgrowth is associated with increased ERK 1/2 activation but decreased caspase 3 linked cell death in Schwann cells after immediate nerve repair in rats. BMC Neurosci. 2011;12:12.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang Y, Yang F, Fu Y, Huang X, Wang W, Jiang X, Gritsenko MA, Zhao R, Monore ME, Pertz OC, Purvine SO, Orton DJ, Jacobs JM, Camp DG 2nd, Smith RD, Klemke RL. Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem. 2011;286:18190–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mast TG, Fadool DA. Mature and precursor brain-derived neurotrophic factor have individual roles in the mouse olfactory bulb. PLoS One. 2012;7:e31978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun Y, Lim Y, Li F, Liu S, Lu JJ, Haberberger R, Zhong JH, Zhou XF. ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One. 2012;7:e35883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang J, Harte-Hargrove LC, Siao CJ, Marinic T, Clarke R, Ma Q, Jing D, Lafrancois JJ, Bath KG, Mark W, Ballon D, Lee FS, Scharfman HE, Hempstead BL. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 2014;7:796–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Candelario-Jalil E, Yang Y, Rosenberg GA. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 2009;158:983–94.

    Article  CAS  PubMed  Google Scholar 

  96. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12:441–5.

    Article  CAS  PubMed  Google Scholar 

  97. Benarroch EE. Tissue plasminogen activator: beyond thrombolysis. Neurology. 2007;69:799–802.

    Article  PubMed  Google Scholar 

  98. Yi JH, Katagiri Y, Susarla B, Figge D, Symes AJ, Geller HM. Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. J Comp Neurol. 2012;520:3295–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bukhari N, Torres L, Robinson JK, Tsirka SE. Axonal regrowth after spinal cord injury via chondroitinase and the tissue plasminogen activator (tPA)/plasmin system. J Neurosci. 2011;31:14931–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hu K, Yang J, Tanaka S, Gonias SL, Mars WM, Liu Y. Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J Biol Chem. 2006;281:2120–7.

    Article  CAS  PubMed  Google Scholar 

  101. Rodier M, Prigent-Tessier A, Bejot Y, Jacquin A, Mossiat C, Marie C, Garnier P. Exogenous t-PA administration increases hippocampal mature BDNF levels. Plasmin- or NMDA-dependent mechanism? PLoS One. 2014;9:e92416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Gakhar-Koppole N, Hundeshagen P, Mandl C, Weyer SW, Allinquant B, Muller U, Ciccolini F. Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway. Eur J Neurosci. 2008;28:871–82.

    Article  PubMed  Google Scholar 

  103. Yasui H, Ito N, Yamamori T, Nakamura H, Okano J, Asanuma T, Nakajima T, Kuwabara M, Inanami O. Induction of neurite outgrowth by alpha-phenyl-N-tert-butylnitrone through nitric oxide release and Ras-ERK pathway in PC12 cells. Free Radic Res. 2010;44:645–54.

    Article  CAS  PubMed  Google Scholar 

  104. Lee HY, Hwang IY, Im H, Koh JY, Kim YH. Non-proteolytic neurotrophic effects of tissue plasminogen activator on cultured mouse cerebrocortical neurons. J Neurochem. 2007;101:1236–47.

    Article  CAS  PubMed  Google Scholar 

  105. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2011;69(1):29–38.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z., Xiong, Y., Chopp, M. (2019). Intranasal tPA Application for Axonal Remodeling in Rodent Stroke and Traumatic Brain Injury Models. In: Chen, J., Wang, J., Wei, L., Zhang, J. (eds) Therapeutic Intranasal Delivery for Stroke and Neurological Disorders. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16715-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16715-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16713-4

  • Online ISBN: 978-3-030-16715-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics