Skip to main content

Intranasal Drug Delivery After Intracerebral Hemorrhage

  • Chapter
  • First Online:

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Intracerebral hemorrhage (ICH) accounts for 10–15% of strokes and is associated with high mortality and disability rates. Studies in animal models suggest a complex pathophysiology mediated by multiple injury cascades that are initiated in the hours after hemorrhage. Effective neuroprotection will therefore likely require rapid delivery of a combination of therapies to perihematomal tissue at risk while minimizing adverse systemic effects. These aims are unlikely to be accomplished by exclusive reliance on intravenous drug administration due to delays in blood-brain barrier penetration and the additive toxicities of multiple agents. In the prehospital and emergency department settings, intranasal drug delivery is the only method currently available that may offer any selective brain targeting. Intranasal administration of recombinant proteins, small molecules and mesenchymal stem cells has improved outcome in both collagenase and blood injection ICH models. These results and the potential utility of intranasal therapies after ICH are reviewed and discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rincon F, Mayer SA. The epidemiology of intracerebral hemorrhage in the United States from 1979 to 2008. Neurocrit Care. 2013;19:95–102.

    Article  Google Scholar 

  2. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373:1632–44.

    Article  Google Scholar 

  3. Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF. Lifetime cost of stroke in the United States. Stroke. 1996;27:1459–66.

    Article  CAS  Google Scholar 

  4. Poon MT, Bell SM, Al-Shahi Salman R. Epidemiology of intracerebral haemorrhage. Front Neurol Neurosci. 2015;37:1–12.

    Article  Google Scholar 

  5. Broderick JP, Adams HP Jr, Barsan W, Feinberg W, Feldmann E, Grotta J, Kase C, Krieger D, Mayberg M, Tilley B, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 1999;30:905–15.

    Article  CAS  Google Scholar 

  6. Sacco S, Marini C, Toni D, Olivieri L, Carolei A. Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke. 2009;40:394–9.

    Article  Google Scholar 

  7. Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN, Macdonald RL, Mitchell PH, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.

    Article  Google Scholar 

  8. Sinar EJ, Mendelow AD, Graham DI, Teasdale GM. Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J Neurosurg. 1987;66:568–76.

    Article  CAS  Google Scholar 

  9. Qureshi AI, Wilson DA, Hanley DF, Traystman RJ. No evidence for an ischemic penumbra in massive experimental intracerebral hemorrhage. Neurology. 1999;52:266–72.

    Article  CAS  Google Scholar 

  10. Zazulia AR, Diringer MN, Videen TO, Adams RE, Yundt K, Aiyagari V, Grubb RL Jr, Powers WJ. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab. 2001;21:804–10.

    Article  CAS  Google Scholar 

  11. Pitkanen HT, Oja SS, Kemppainen K, Seppa JM, Mero AA. Serum amino acid concentrations in aging men and women. Amino Acids. 2003;24:413–21.

    Article  CAS  Google Scholar 

  12. Schramm M, Eimerl S, Costa E. Serum and depolarizing agents cause acute neurotoxicity in cultured cerebellar granule cells: role of the glutamate receptor responsive to n-methyl-d-aspartate. Proc Natl Acad Sci U S A. 1990;87:1193–7.

    Article  Google Scholar 

  13. D’Eufemia P, Finocchiaro R, Lendvai D, Celli M, Viozzi L, Troiani P, Turri E, Giardini O. Erythrocyte and plasma levels of glutamate and aspartate in children affected by migraine. Cephalalgia. 1997;17:652–7.

    Article  Google Scholar 

  14. Divino Filho JC, Hazel SJ, Furst P, Bergstrom J, Hall K. Glutamate concentration in plasma, erythrocyte and muscle in relation to plasma levels of insulin-like growth factor (igf)-i, igf binding protein-1 and insulin in patients on haemodialysis. J Endocrinol. 1998;156:519–27.

    Article  CAS  Google Scholar 

  15. Ardizzone TD, Lu A, Wagner KR, Tang Y, Ran R, Sharp FR. Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat. Stroke. 2004;35:2587–91.

    Article  CAS  Google Scholar 

  16. Sinn DI, Lee ST, Chu K, Jung KH, Song EC, Kim JM, Park DK, Kim M, Roh JK. Combined neuroprotective effects of celecoxib and memantine in experimental intracerebral hemorrhage. Neurosci Lett. 2007;411:238–42.

    Article  CAS  Google Scholar 

  17. Jaremko KM, Chen-Roetling J, Chen L, Regan RF. Accelerated hemolysis and neurotoxicity in neuron-glia-blood clot co-cultures. J Neurochem. 2010;114:1063–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Terai K, Suzuki M, Sasamata M, Yatsugi S, Yamaguchi T, Miyata K. Effect of ampa receptor antagonist ym872 on cerebral hematoma size and neurological recovery in the intracerebral hemorrhage rat model. Eur J Pharmacol. 2003;467:95–101.

    Article  CAS  Google Scholar 

  19. Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke. 2007;38:759–62.

    Article  CAS  Google Scholar 

  20. Ardizzone TD, Zhan X, Ander BP, Sharp FR. Src kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke. 2007;38:1621–5.

    Article  CAS  Google Scholar 

  21. Ohnishi M, Katsuki H, Izumi Y, Kume T, Takada-Takatori Y, Akaike A. Mitogen-activated protein kinases support survival of activated microglia that mediate thrombin-induced striatal injury in organotypic slice culture. J Neurosci Res. 2010;88:2155–64.

    Article  CAS  Google Scholar 

  22. Gong Y, Xi GH, Keep RF, Hoff JT, Hua Y. Complement inhibition attenuates brain edema and neurological deficits induced by thrombin. Acta Neurochir Suppl. 2005;95:389–92.

    Article  CAS  Google Scholar 

  23. Park KW, Jin BK. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons: role of neuronal nadph oxidase. J Neurosci Res. 2008;86:1053–63.

    Article  CAS  Google Scholar 

  24. Lee KR, Colon GP, Betz AL, Keep RF, Kim S, Hoff JT. Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg. 1996;84:91–6.

    Article  CAS  Google Scholar 

  25. Kitaoka T, Hua Y, Xi G, Hoff JT, Keep RF. Delayed argatroban treatment reduces edema in a rat model of intracerebral hemorrhage. Stroke. 2002;33:3012–8.

    Article  CAS  Google Scholar 

  26. Wu J, Hua Y, Keep RF, Nakemura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34:2964–9.

    Article  CAS  Google Scholar 

  27. Wagner KR, Hua Y, de Courten-Myers GM, Broderick JP, Nishimura RN, Lu SY, Dwyer BE. Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivo and in vitro studies. Cell Mol Biol. 2000;46:597–608.

    CAS  PubMed  Google Scholar 

  28. Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg. 2002;96:287–93.

    Article  Google Scholar 

  29. Bradley WG Jr. MR appearance of hemorrhage in the brain. Radiology. 1993;189:15–26.

    Article  Google Scholar 

  30. Wagner KR, Dwyer BE. Hematoma removal, heme, and heme oxygenase following hemorrhagic stroke. Ann N Y Acad Sci. 2004;1012:237–51.

    Article  CAS  Google Scholar 

  31. Liu R, Li H, Hua Y, Keep RF, Xiao J, Xi G, Huang Y. Early hemolysis within human intracerebral hematomas: an MRI study. Transl Stroke Res. 2018. https://doi.org/10.1007/s12975-018-0630-2.

    Article  Google Scholar 

  32. Chen-Roetling J, Liu W, Regan RF. Iron accumulation and neurotoxicity in cortical cultures treated with holotransferrin. Free Radic Biol Med. 2011;51:1966–74.

    Article  CAS  Google Scholar 

  33. Okauchi M, Hua Y, Keep RF, Morgenstern LB, Schallert T, Xi G. Deferoxamine treatment for intracerebral hemorrhage in aged rats. Therapeutic time window and optimal duration. Stroke. 2010;41:375–82.

    Article  CAS  Google Scholar 

  34. Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF. Potentiation of nmda receptor function by the serine protease thrombin. J Neurosci. 2000;20:4582–95.

    Article  CAS  Google Scholar 

  35. Regan RF, Panter SS. Hemoglobin potentiates excitotoxic injury in cortical cell culture. J Neurotrauma. 1996;13:223–31.

    Article  CAS  Google Scholar 

  36. Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation. 2012;9:46.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    Article  CAS  Google Scholar 

  38. Chapman CD, Frey WH 2nd, Craft S, Danielyan L, Hallschmid M, Schioth HB, Benedict C. Intranasal treatment of central nervous system dysfunction in humans. Pharm Res. 2013;30:2475–84.

    Article  CAS  Google Scholar 

  39. Lekic T, Flores J, Klebe D, Doycheva D, Rolland WB, Tang J, Zhang JH. Intranasal igf-1 reduced rat pup germinal matrix hemorrhage. Acta Neurochir Suppl. 2016;121:209–12.

    Article  Google Scholar 

  40. Malaguit J, Casel D, Dixon B, Doycheva D, Tang J, Zhang JH, Lekic T. Intranasal osteopontin for rodent germinal matrix hemorrhage. Acta Neurochir Suppl. 2016;121:217–20.

    Article  Google Scholar 

  41. Yu L, Lu Z, Burchell S, Nowrangi D, Manaenko A, Li X, Xu Y, Xu N, Tang J, Dai H, et al. Adropin preserves the blood-brain barrier through a notch1/hes1 pathway after intracerebral hemorrhage in mice. J Neurochem. 2017;143:750–60.

    Article  CAS  Google Scholar 

  42. Tong LS, Shao AW, Ou YB, Guo ZN, Manaenko A, Dixon BJ, Tang J, Lou M, Zhang JH. Recombinant Gas6 augments Axl and facilitates immune restoration in an intracerebral hemorrhage mouse model. J Cereb Blood Flow Metab. 2017;37:1971–81.

    Article  CAS  Google Scholar 

  43. Gong L, Manaenko A, Fan R, Huang L, Enkhjargal B, McBride D, Ding Y, Tang J, Xiao X, Zhang JH. Osteopontin attenuates inflammation via JAK2/STAT1 pathway in hyperglycemic rats after intracerebral hemorrhage. Neuropharmacology. 2018;138:160–9.

    Article  CAS  Google Scholar 

  44. Tsuchiyama R, Sozen T, Manaenko A, Zhang JH, Tang J. The effects of nicotinamide adenine dinucleotide on intracerebral hemorrhage-induced brain injury in mice. Neurol Res. 2009;31:179–82.

    Article  CAS  Google Scholar 

  45. Zhang Y, Chen Y, Wu J, Manaenko A, Yang P, Tang J, Fu W, Zhang JH. Activation of dopamine D2 receptor suppresses neuroinflammation through αB-crystalline by inhibition of NF-κB nuclear translocation in experimental ICH mice model. Stroke. 2015;46:2637–46.

    Article  CAS  Google Scholar 

  46. Sun J, Wei ZZ, Gu X, Zhang JY, Zhang Y, Li J, Wei L. Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol. 2015;272:78–87.

    Article  CAS  Google Scholar 

  47. Thorne RG, Emory CR, Ala TA, Frey WH 2nd. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995;692:278–82.

    Article  CAS  Google Scholar 

  48. Charbit AR, Akerman S, Goadsby PJ. Comparison of the effects of central and peripheral dopamine receptor activation on evoked firing in the trigeminocervical complex. J Pharmacol Exp Ther. 2009;331:752–63.

    Article  CAS  Google Scholar 

  49. Danielyan L, Schafer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, Burkhardt U, Proksch B, Verleysdonk S, Ayturan M, et al. Intranasal delivery of cells to the brain. Eur J Cell Biol. 2009;88:315–24.

    Article  CAS  Google Scholar 

  50. Galeano C, Qiu Z, Mishra A, Farnsworth SL, Hemmi JJ, Moreira A, Edenhoffer P, Hornsby PJ. The route by which intranasally delivered stem cells enter the central nervous system. Cell Transplant. 2018;27:501–14.

    Article  Google Scholar 

  51. Nijboer CH, Kooijman E, van Velthoven CT, van Tilborg E, Tiebosch IA, Eijkelkamp N, Dijkhuizen RM, Kesecioglu J, Heijnen CJ. Intranasal stem cell treatment as a novel therapy for subarachnoid hemorrhage. Stem Cells Dev. 2018;27:313–25.

    Article  CAS  Google Scholar 

  52. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56:3–17.

    Article  CAS  Google Scholar 

  53. Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, Marti DL, Hoekman JD, Matthews RB, Frey WH 2nd, et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther. 2009;330:679–86.

    Article  CAS  Google Scholar 

  54. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press; 1999. p. 936.

    Google Scholar 

  55. Cable H, Lloyd JB. Cellular uptake and release of two contrasting iron chelators. J Pharm Pharmacol. 1999;51:131–4.

    Article  CAS  Google Scholar 

  56. Persson HL, Richardson DR. Iron-binding drugs targeted to lysosomes: a potential strategy to treat inflammatory lung disorders. Expert Opin Investig Drugs. 2005;14:997–1008.

    Article  CAS  Google Scholar 

  57. Sadrzadeh SMH, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin: a biologic Fenton reagent. J Biol Chem. 1984;259:14354–6.

    CAS  PubMed  Google Scholar 

  58. Regan RF, Panter SS. Neurotoxicity of hemoglobin in cortical cell culture. Neurosci Lett. 1993;153:219–22.

    Article  CAS  Google Scholar 

  59. Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 2004;100:672–8.

    Article  CAS  Google Scholar 

  60. Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40:2241–3.

    Article  CAS  Google Scholar 

  61. Warkentin LM, Auriat AM, Wowk S, Colbourne F. Failure of deferoxamine, an iron chelator, to improve outcome after collagenase-induced intracerebral hemorrhage in rats. Brain Res. 2010;1309:95–103.

    Article  CAS  Google Scholar 

  62. Wu H, Wu T, Xu X, Wang J. Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J Cereb Blood Flow Metab. 2011;31:1243–50.

    Article  CAS  Google Scholar 

  63. Dragsten PR, Hallaway PE, Hanson GJ, Berger AE, Bernard B, Hedlund BE. First human studies with a high-molecular-weight iron chelator. J Lab Clin Med. 2000;135:57–65.

    Article  CAS  Google Scholar 

  64. Rassu G, Soddu E, Cossu M, Brundu A, Cerri G, Marchetti N, Ferraro L, Regan RF, Giunchedi P, Gavini E, et al. Solid microparticles based on chitosan or methyl-beta-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J Control Release. 2015;201:68–77.

    Article  CAS  Google Scholar 

  65. Persson HL, Yu Z, Tirosh O, Eaton JW, Brunk UT. Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radic Biol Med. 2003;34:1295–305.

    Article  CAS  Google Scholar 

  66. Porter JB, Huehns ER. The toxic effects of desferrioxamine. Baillieres Clin Haematol. 1989;2:459–74.

    Article  CAS  Google Scholar 

  67. Chaston TB, Richardson DR. Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity. Am J Hematol. 2003;73:200–10.

    Article  CAS  Google Scholar 

  68. Kushner JP, Porter JP, Olivieri NF. Secondary iron overload. Hematology. 2001;2001:47–61.

    Article  Google Scholar 

  69. Yeatts SD, Palesch YY, Moy CS, Selim M. High dose deferoxamine in intracerebral hemorrhage (hi-def) trial: rationale, design, and methods. Neurocrit Care. 2013;19:257–66.

    Article  CAS  Google Scholar 

  70. Tenenbein M, Kowalski S, Sienko A, Bowden DH, Adamson IY. Pulmonary toxic effects of continuous desferrioxamine administration in acute iron poisoning. Lancet. 1992;339:699–701.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond F. Regan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen-Roetling, J., Regan, R.F. (2019). Intranasal Drug Delivery After Intracerebral Hemorrhage. In: Chen, J., Wang, J., Wei, L., Zhang, J. (eds) Therapeutic Intranasal Delivery for Stroke and Neurological Disorders. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16715-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16715-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16713-4

  • Online ISBN: 978-3-030-16715-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics