Skip to main content

Transnasal Induction of Therapeutic Hypothermia for Neuroprotection

  • Chapter
  • First Online:
Therapeutic Intranasal Delivery for Stroke and Neurological Disorders

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 322 Accesses

Abstract

Effective control of core body temperature and producing hypothermia is the standard of care for comatose patients with cardiac arrest and also in neurogenic fevers. Nasopharyngeal space has been a region of great interest to induce therapeutic hypothermia for a long time. This is primarily due to the favorable location of the nasal heat exchanger directly beneath the brain, the main target for hypothermia. This chapter focuses on achieving therapeutic hypothermia of the brain and core body temperature by using transnasal dry air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geurkink N. Nasal anatomy, physiology, and function. J Allergy Clin Immunol. 1983;72(2):123–8.

    Article  CAS  Google Scholar 

  2. Covaciu L, Allers M, Enblad P, et al. Intranasal selective brain cooling in pigs. Resuscitation. 2008;76:83–8.

    Article  CAS  Google Scholar 

  3. Andrews PJD, Harris B, Murray GD. A randomised cross-over trial of the effects of airflow through the upper respiratory tract of intubated, brain injured patients on brain temperature and selective brain cooling. Br J Anaesth. 2005;94:330–5.

    Article  CAS  Google Scholar 

  4. Buscha H, Eichwedeb F, Födisch M, Taccone FS, et al. Safety and feasibility of nasopharyngeal evaporative cooling in the emergency department setting in survivors of cardiac arrest. Resuscitation. 2010;81:943–9.

    Article  Google Scholar 

  5. Castren M, Nordberg P, Svensson L, et al. Intra-arrest transnasal evaporative cooling a randomized, prehospital, multicenter study (PRINCE: pre-ROSC intranasal cooling effectiveness). Circulation. 2010;122:729–36.

    Article  Google Scholar 

  6. Bollera M, Lampea JW, Katza JM, Barbutc D, Beckera LB. Feasibility of intra-arrest hypothermia induction: a novel nasopharyngeal approach achieves preferential brain cooling. Resuscitation. 2010;81:1025–30.

    Article  Google Scholar 

  7. Guan J, Barbut D, Wang H, Li Y, Tsai M, Sun S, Inderbitzen B, Weil MH, Tang W. Rapid induction of head cooling by the intranasal route during cardiopulmonary resuscitation improves survival and neurological outcomes. Crit Care Med. 2008;36(suppl):S428–33.

    Article  Google Scholar 

  8. Abou-Chebl A, Sung G, Barbut D, Torbey M. Local brain temperature reduction through intranasal cooling with the RhinoChill device: preliminary safety data in brain-injured patients. Stroke. 2011;42(8):2164–9.

    Article  Google Scholar 

  9. Edwards C, Lowe KC, Röhlke W, Geister U, Reuter P, Meinert H. Effects of a novel perfluorocarbon emulsion on neutrophil chemiluminescence in human whole blood in vitro. Artif Cells Blood Substit Immobil Biotechnol. 1997;25:255–60.

    Article  CAS  Google Scholar 

  10. Flaim S. Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif Cells Blood Substit Immobil Biotechnol. 1994;22:1043–54.

    Article  CAS  Google Scholar 

  11. Bucala R, Kawakami M, Cerami A. Cytotoxicity of a perfluorocarbon blood substitute to macrophages in vitro. Science. 1983;27:965–7.

    Article  Google Scholar 

  12. OECD/UNEP Global PFC Group. Synthesis paper on per- and polyfluorinated chemicals (PFCs). Paris: Environment, Health and Safety, Environment Directorate, OECD; 2013.

    Google Scholar 

  13. Harris S, Bansbach J, Dietrich I, Kalbhenn J, Schmutz A. RhinoChill(®)-more than an “ice-cream headache (1)” serious adverse event related to transnasal evaporative cooling. Resuscitation. 2016;103:e5–6.

    Article  Google Scholar 

  14. Einer-Jensen N, Khorooshi MH. Cooling of the brain through oxygen flushing of the nasal cavities in intubated rats: an alternative model for treatment of brain injury. Exp Brain Res. 2000;130:244–7.

    Article  CAS  Google Scholar 

  15. Chava R, Zviman M, Raghavan MS, Halperin H, et al. Rapid induction of therapeutic hypothermia using transnasal high flow dry air. Ther Hypothermia Temp Manag. 2017;7(1):50–6.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a NIH SBIR grant to Harikrishna Tandri (1 R44 HL108542-01A1).

Disclosures

Dr. Tandri holds patents for transnasal cooling and invented the transnasal dry air cooling device (CoolStat).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harikrishna Tandri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chava, R., Tandri, H. (2019). Transnasal Induction of Therapeutic Hypothermia for Neuroprotection. In: Chen, J., Wang, J., Wei, L., Zhang, J. (eds) Therapeutic Intranasal Delivery for Stroke and Neurological Disorders. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16715-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16715-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16713-4

  • Online ISBN: 978-3-030-16715-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics