Skip to main content

Coevolution of Generative Adversarial Networks

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2019)

Abstract

Generative adversarial networks (GAN) became a hot topic, presenting impressive results in the field of computer vision. However, there are still open problems with the GAN model, such as the training stability and the hand-design of architectures. Neuroevolution is a technique that can be used to provide the automatic design of network architectures even in large search spaces as in deep neural networks. Therefore, this project proposes COEGAN, a model that combines neuroevolution and coevolution in the coordination of the GAN training algorithm. The proposal uses the adversarial characteristic between the generator and discriminator components to design an algorithm using coevolution techniques. Our proposal was evaluated in the MNIST dataset. The results suggest the improvement of the training stability and the automatic discovery of efficient network architectures for GANs. Our model also partially solves the mode collapse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  3. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  4. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821. IEEE (2017)

    Google Scholar 

  5. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANS. In: Advances in Neural Information Processing Systems, pp. 5769–5779 (2017)

    Google Scholar 

  6. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANS. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  7. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  8. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification. J. Artif. Intell. Res. 21, 63–100 (2004)

    Article  Google Scholar 

  9. Miikkulainen, R., et al.: Evolving deep neural networks. arXiv preprint arXiv:1703.00548 (2017)

  10. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  11. Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)

    Article  Google Scholar 

  12. AssunĂ§Ă£o, F., Lourenço, N., Machado, P., Ribeiro, B.: Evolving the topology of large scale deep neural networks. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., GarcĂ­a-SĂ¡nchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 19–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_2

    Chapter  Google Scholar 

  13. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42(1–3), 228–234 (1990)

    Article  Google Scholar 

  14. Rawal, A., Rajagopalan, P., Miikkulainen, R.: Constructing competitive and cooperative agent behavior using coevolution. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), pp. 107–114 (2010)

    Google Scholar 

  15. GarcĂ­a-Pedrajas, N., HervĂ¡s-MartĂ­nez, C., Muñoz-PĂ©rez, J.: Covnet: a cooperative coevolutionary model for evolving artificial neural networks. IEEE Trans. Neural Netw. 14(3), 575–596 (2003)

    Article  Google Scholar 

  16. GarcĂ­a-Pedrajas, N., HervĂ¡s-MartĂ­nez, C., Ortiz-Boyer, D.: Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans. Evol. Comput. 9(3), 271–302 (2005)

    Article  Google Scholar 

  17. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 9, 937–965 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANS created equal? a large-scale study. arXiv preprint arXiv:1711.10337 (2017)

  19. Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. arXiv preprint arXiv:1803.00657 (2018)

  20. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANS trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6629–6640 (2017)

    Google Scholar 

  21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  22. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  25. Ficici, S.G., Pollack, J.B.: A game-theoretic memory mechanism for coevolution. In: CantĂº-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 286–297. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_35

  26. Monroy, G.A., Stanley, K.O., Miikkulainen, R.: Coevolution of neural networks using a layered pareto archive. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 329–336. ACM (2006)

    Google Scholar 

  27. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

Download references

Acknowledgments

This article is based upon work from COST Action CA15140: ImAppNIO, supported by COST (European Cooperation in Science and Technology): www.cost.eu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor Costa , Nuno Lourenço or Penousal Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, V., Lourenço, N., Machado, P. (2019). Coevolution of Generative Adversarial Networks. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16692-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16691-5

  • Online ISBN: 978-3-030-16692-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics